Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T22:31:53.185Z Has data issue: false hasContentIssue false

Pathogens as Mechanisms for Integrated Weed Management

Published online by Cambridge University Press:  12 June 2017

P. C. Quimby Jr.
Affiliation:
South. Weed Sci. Lab., Agric. Res. Sci. Ed. Admin., U.S. Dep. Agric., Stoneville, MS 38776
H. L. Walker
Affiliation:
South. Weed Sci. Lab., Agric. Res. Sci. Ed. Admin., U.S. Dep. Agric., Stoneville, MS 38776

Extract

A need exists to manage or manipulate plant pathogens for biocontrol of weeds in row crops. Many weed species remain refractory to conventional weed-control technology. Some of these weeds occur in the same families as important crops and are resistant or tolerant to many of the herbicides that are applied for weed control within those crops. Preemergence treatments are needed for some weed species for which only postemergence treatments are now available. The cost of controlling some weeds is so prohibitive that many farmers will not spend the necessary money; therefore, more economical control is needed.

Type
Other
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Boyette, C. D., Templeton, G. E., and Smith, R. J. Jr. 1979. Control of winged waterprimrose (Jussiaea decurrens) and northern jointvetch (Aeschynomene virginica) with fungal pathogens. Weed Sci. 27:497501.Google Scholar
2. Chandler, J. M. 1981. Estimated losses of crops to weeds. In Ennis, W. B. Jr., ed. Pest Management. CRC Press, West Palm Beach, FL. (In press).Google Scholar
3. Conway, K. E. 1976. Evaluation of Cercospora rodmanii as a biological control of water hyacinths. Phytopathology 66:914917.Google Scholar
4. Daniel, J. T., Templeton, G. E., Smith, R. J., and Fox, W. T. 1973. Biological control of northern jointvetch in rice with an endemic fungal disease. Weed Sci. 21:303307.CrossRefGoogle Scholar
5. Freeman, T. E., Charudattan, R., and Conway, K. E. 1976. Status of the use of plant pathogens in the biological control of weeds. Pages 201206 in Freeman, T. E., ed., Proc. IV. Int. Symp. Biol. Control of Weeds, Univ. of Fla., Gainesville.Google Scholar
6. Frick, K. E. and Chandler, J. M. 1978. Augmenting the moth (Bactra verutana) in field plots for early-season suppression of purple nutsedge (Cyperus rotundus . Weed Sci. 26:703710.Google Scholar
7. Frick, K. E. and Garcia, C. Jr. 1975. Bactra verutana as a biological control agent for purple nutsedge. Ann. Entomol. Soc. Am. 68:714.Google Scholar
8. Huffaker, C. B. 1957. Fundamentals of biological control of weeds. Hilgardia 27:101157.Google Scholar
9. Janzen, D. H. 1966. Coevolution of mutualism between ants and acacias in Central America. Evolution 20:249275.CrossRefGoogle ScholarPubMed
10. Kenney, D. S., Conway, K. E., and Ridings, W. H. 1979. Mycoherbicides-potential for commercialization. Pages 123130 in Underkofler, L. A., ed. Developments in Industrial Microbiology. Soc. Industrial Microbiol., Arlington, VA.Google Scholar
11. Ohr, H. D. 1974. Plant disease impacts on weeds in the natural ecosystem. Proc. Am. Phytopathol. Soc. 1:181184.Google Scholar
12. Orr, C. C., Abernathy, J. R., and Hudspeth, E. B. 1975. Nothanguina phyllobia, a nematode parasite of silverleaf nightshade. Plant Dis. Rep. 59:416418.Google Scholar
13. Pimental, David. 1963. Introducing parasites and predators to control native pests. Can. Entomol. 95:785792.Google Scholar
14. Quimby, P. C. Jr. 1981. Impact of diseases on plant populations. In Charudattan, R. and Walker, H. L., eds. Intl. Symp. on Biological Weed Control with Plant Pathogens, Little Rock, AR, John Wiley & Sons, Inc., New York. (In press).Google Scholar
15. Ridings, W. H., Burnett, H. C., Schoulties, C. L., and El-Gholl, N. E. 1976. Biological control of milkweed vine in Florida citrus groves with a pathotype of Phytophthora citrophthora . Proc. IV Intl. Symp. Biological Control of Weeds, Univ. of Fla., Gainesville. 224 pp.Google Scholar
16. TeBeest, D. T., Templeton, G. E., and Smith, R. J. Jr. 1978. Decline of a biocontrol fungus in field soil during winter. Ark. Farm Res. 27(1):12.Google Scholar
17. Templeton, G. E., TeBeest, D. O., and Smith, R. F. Jr. 1979. Biological weed control with mycoherbicides. Annu. Rev. Phytopathol. 17:301310.Google Scholar
18. Templeton, G. E. 1974. Endemic fungus disease for control of prickly sida in cotton and soybeans. Arkansas Farm Res. 23:12.Google Scholar
19. Templeton, G. E., Smith, R. J. Jr., and Klomparens, W. 1980. Commercialization of fungi and bacteria for biological control. Biocontrol News and Information 1(4):1.Google Scholar
20. Wade, Nicholas. 1980. Court says lab-made life can be patented. Science 208:1445.CrossRefGoogle ScholarPubMed
21. Walker, H. L. and Sciumbato, G. L. 1979. Evaluation of Alternaria macrospora as a potential biocontrol agent for spurred anoda (Anoda cristata): Host range studies. Weed Sci. 27:612614.CrossRefGoogle Scholar
22. Walker, H. L. 1980. Alternaria macrospora as a potential biocontrol agent for spurred anoda: Production of spores for field inoculum. U.S. Dep. Agric., Sci. Ed. Admin. AAT-S-12. 5 pp.Google Scholar
23. Walker, H. L. 1981. Granular formulation of Alternaria macrospora for control of spurred anoda (Anoda cristata . Weed Sci. 29:342345.CrossRefGoogle Scholar
24. Walker, H. L. 1981. A seedling blight of sicklepod caused by Alternaria cassiae . Plant Dis. (In press).Google Scholar
25. Walker, H. L. 1981. Fusarium lateritium: A pathogen of spurred anoda (Anoda cristata) prickly sida (Sida spinosa), and velvetleaf (Abutilon theophrasti). Weed Sci. (In press).Google Scholar