Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T22:32:14.325Z Has data issue: false hasContentIssue false

A New Mutation in Plant ALS Confers Resistance to Five Classes of ALS-Inhibiting Herbicides

Published online by Cambridge University Press:  20 January 2017

Cory M. Whaley
Affiliation:
Department of Plant Pathology, pHysiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
Henry P. Wilson*
Affiliation:
Eastern Shore Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Painter, VA 23420
James H. Westwood
Affiliation:
Department of Plant Pathology, pHysiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
*
Corresponding author's E-mail: [email protected]

Abstract

Experiments were conducted to evaluate a biotype of smooth pigweed that had survived applications of sulfonylurea (SU) and imidazolinone (IMI) herbicides in a single season. The source field had a history of repeated acetolactate synthase (ALS)-inhibiting herbicide use over several years. Whole-plant response experiments evaluated the resistant (R11) biotype and an ALS-inhibitor susceptible (S) smooth pigweed biotype to herbicides from the SU, IMI, pyrimidinylthiobenzoate (PTB), and triazolopyrimidine sulfonanilide (TP) chemical families. The R11 biotype exhibited 60- to 3,200-fold resistance to all four ALS-Inhibiting herbicide chemistries compared with the S biotype. Nucleotide sequence comparison of ALS genes from R11 and S biotypes revealed a single nucleotide difference that resulted in R11 having an amino acid substitution of aspartate to glutamate at position 376, as numbered relative to the protein sequence of mouseearcress. This is the first report of an amino acid substitution at this position of an ALS gene isolated from a field-selected weed biotype. To verify the role of this mutation in herbicide resistance, the ALS gene was cloned and expressed in Arabidopsis. Transgenic Arabidopsis expressing this ALS gene exhibited resistance to SU, IMI, PTB, TP, and sulfonylaminocarbonyltriazolinone ALS-Inhibiting herbicide classes.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bedbrook, J. R., Chaleff, R. S., Falco, S. C., Mazur, B. J., Somerville, C. R., Yadev, N. S., inventors; E. I. Du Pont de Nemours and Company, assignee Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase. 1995. U.S. patent 5,378,824. 13.Google Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270:1738117385.CrossRefGoogle ScholarPubMed
Blackshaw, R. E., Kanashiro, D., Moloney, M. M., and Crosby, W. L. 1994. Growth, yield and quality of canola expressing resistance to acetolactate synthase inhibiting herbicides. Can. J. Plant Sci. 74:745751.CrossRefGoogle Scholar
Chaleff, R. S. and Mauvais, C. J. 1984. Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science. 224:14431445.CrossRefGoogle ScholarPubMed
Christoffoleti, P. J., Westra, P., and Moore, F. III. 1997. Growth analysis of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 45:691695.Google Scholar
Christopher, J. T., Powles, S. B., and Holtum, J. A. M. 1992. Resistance to acetolactate synthase-inhibiting herbicides in annual ryegrass (Lolium rigidum) involves at least two mechanisms. Plant Physiol. 100:19091913.CrossRefGoogle ScholarPubMed
Christopher, J. T., Powles, S. B., Liljegren, D. R., and Holtum, J. A. M. 1991. Cross-resistance to herbicides in annual ryegrass (Lolium rigidum), II: chlorsulfuron resistance involves a wheat-like detoxification system. Plant Physiol. 100:10361043.CrossRefGoogle Scholar
Clough, S. J. and Bent, A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana . Plant J. 16:735743.CrossRefGoogle Scholar
Devine, M. D. and Eberlein, C. V. 1997. Physiological, biochemical and molecular aspects of herbicide resistance based on altered target sites. Pages 159185. in Michael Roe, R., Burton, J.D., Kuhr, R.J. eds. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Amsterdam, The Netherlands IOS.Google Scholar
Duggleby, R. G. and Pang, S. S. 2000. Acetohydroxyacid synthase. J. Biochem. Mol. Biol. 33:136.Google Scholar
Durner, J., Gailus, V., and Boger, P. 1990. New aspects on inhibition of plant acetolactate synthase by chlorsulfuron and imazaquin. Plant Physiol. 95:11441149.CrossRefGoogle Scholar
Falco, S. C., McDevitt, R. E., Chui, C. F., Hartnett, M. E., Knowlton, S., Mauvais, C. J., Smith, J. K., and Mazur, B. J. 1989. Engineering herbicide-resistant acetolactate synthase. Dev. Ind. MicroBiol. 30:187194.Google Scholar
Gaeddert, J. W., Peterson, D. E., and Horak, M. J. 1997. Control and cross-resistance of an acetolactate synthase inhibitor-resistant Palmer amaranth (Amaranthus palmeri) biotype. Weed Technol. 11:132137.CrossRefGoogle Scholar
Gerwick, B. C., Subramanian, M. V., and Loney-Gallant, V. I. 1990. Mechanism of action of the 1,2,4-triazolo[1,5-a]pyrimidines. Pestic. Sci. 29:357364.CrossRefGoogle Scholar
Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., Thill, D. C., and Hoffman, D. L. 1992. DNA sequence variation in domain A of the acetolactate synthase gene of herbicide resistant and susceptible weed biotypes. Weed Sci. 40:670676.CrossRefGoogle Scholar
Heap, I. 2006. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: April 13, 2006.Google Scholar
Hinz, J. R. R. and Owen, M. D. K. 1997. Acetolactate synthase resistance in a common waterhemp (Amaranthus rudis) population. Weed Technol. 11:1318.CrossRefGoogle Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.CrossRefGoogle Scholar
Kay, R., Chan, A., Daly, M., and Macpherson, J. 1987. Duplication of CaMV promoter sequences creates a strong enhancer for plant genes. Science. 236:12991302.CrossRefGoogle Scholar
Le, D. T., Yoon, M-Y., Kim, Y. T., and Choi, J-D. 2005. Roles of three well-conserved arginine residues in mediating the catalytic activity of tobacco acetohydroxy acid synthase. J. Biochem. 138:3540.CrossRefGoogle ScholarPubMed
Lovell, S. T., Wax, L. M., Horak, M. J., and Peterson, D. E. 1996. Imidazolinone and sulfonylurea resistance in a biotype of common waterhemp (Amaranthus rudis). Weed Sci. 44:789794.CrossRefGoogle Scholar
Mallory-Smith, C. A., Hendrickson, P., and Mueller-Warrant, G. W. 1990. Identification of herbicide resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.CrossRefGoogle Scholar
Manley, B. S., Wilson, H. P., and Hines, T. E. 1996. Smooth pigweed (Amaranthus hybridus) and livid amaranth (A. lividus) response to several imidazolinone and sulfonylurea herbicides. Weed Technol. 10:835841.CrossRefGoogle Scholar
McCourt, J. A., Pang, S. S., Guddat, L. W., and Duggleby, R. G. 2005. Elucidating the specificity of binding of sulfonylurea herbicides to acetohydroxyacid synthase. Biochemistry. 44:23302338.CrossRefGoogle ScholarPubMed
McNaughton, K. E., Letarte, J., Lee, E. A., and Tardif, F. J. 2005. Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus) and Powell amaranth (Amaranthus powellii). Weed Sci. 53:1722.CrossRefGoogle Scholar
Medina-Bolivar, F. and Cramer, C. L. 2004. Production of recombinant proteins in hairy roots cultured in plastic sleeve bioreactors. Pages 351363. in Balbas, P., Lorence, A. eds. Recombinant Gene Expression: Reviews and Protocols. 2nd ed. Totowa, NJ Humana.CrossRefGoogle Scholar
Menendez, J. M., De Prado, R., and Devine, M. D. 1997. Chlorsulfuron cross-resistance in a chlorotoluron-resistant biotype of Alopecurus myosuroides . Pages 319. in. Proceedings of the Brighton Crop Protection Conference. Alton, UK The British Crop Protection Council.Google Scholar
Patzoldt, W. L. and Tranel, P. J. 2001. ALS mutations conferring herbicide resistance in waterhemp. Proc. North Cent. Weed Sci. Soc. 56:67.Google Scholar
Poston, D. H., Wilson, H. P., and Hines, T. E. 2000. Imidazolinone resistance in several Amaranthus hybridus populations. Weed Sci. 48:508513.CrossRefGoogle Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 83139. in Powles, S.B., Holtum, J.A.M. eds. Herbicide Resistance in Plants: Biology and Biochemistry. Ann Arbor, MI Lewis.Google Scholar
Santel, H. J., Bowden, B. A., Sorensen, V. M., Mueller, K. H., and Reynolds, J. 1999. Flucarbazone-sodium: a new herbicide for grass control in wheat. Weed Sci. Soc. Am. Abstr. 39:7.Google Scholar
SAS 2000. SAS/STAT Software, Release 8.1. Cary, NC SAS Institute. 23712381.Google Scholar
Shaner, D. L. 1999. Resistance to acetolactate synthase (ALS) inhibitors in the United States: history, occurrence, detection and management. Weed Sci. 44:405411.CrossRefGoogle Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones: potential inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.CrossRefGoogle Scholar
Sprague, C. L., Stoller, E. W., Wax, L. M., and Horak, M. J. 1997. Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-Inhibiting herbicides. Weed Sci. 45:192197.CrossRefGoogle Scholar
Stidham, M. A. 1991. Herbicides that inhibit acetohydroxyacid synthase. Weed Sci. 39:428434.CrossRefGoogle Scholar
Tardiff, F. J., Rajcan, I., and Costea, M. 2006. A mutation in the herbicide target site acetohydroxyacid synthase produces morphological and structural alterations and reduces fitness in Amaranthus powellii . New Phytol. 169:251264.CrossRefGoogle Scholar
Thompson, C. R., Thill, D. C., and Shafii, B. 1994. Growth and competitiveness of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 42:172179.CrossRefGoogle Scholar
Tourneur, C., Jouanin, L., and Vaucheret, H. 1993. Over-expression of acetolactate synthase confers resistance to valine in transgenic tobacco. Plant Sci. 88:159168.CrossRefGoogle Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-Inhibiting herbicides: what have we learned? Weed Sci. 50:700712.CrossRefGoogle Scholar
Tranel, P. J., Wright, T. R., and Heap, I. M. 2004. ALS mutations from herbicide-resistant weeds. http://www.weedscience.com. Accessed: December 8, 2004.Google Scholar
Veldhuis, L. J., Hall, L. M., O'Donovan, J. T., Dyer, W., and Hall, J. C. 2000. Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. J. Agric. Food Chem. 48:29862990.CrossRefGoogle ScholarPubMed
Whaley, C. M., Wilson, H. P., and Westwood, J. H. 2006. ALS resistance in several smooth pigweed (Amaranthus hybridus) biotypes. Weed Sci. 54:828832.CrossRefGoogle Scholar
Woodworth, A. R., Rosen, B. A., and Bernasconi, P. 1996. Broad range resistance to herbicides targeting acetolactate synthase (ALS) in a field isolate of Amaranthus sp. is conferred by a Trp to Leu mutation in the ALS gene (Accession No. U55852). Plant Physiol. 111:1353.Google Scholar