Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-18T15:27:40.508Z Has data issue: false hasContentIssue false

Multiple Resistance in Palmer Amaranth to Glyphosate and Pyrithiobac Confirmed in Georgia

Published online by Cambridge University Press:  20 January 2017

Lynn M. Sosnoskie*
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794
Jeremy M. Kichler
Affiliation:
Cooperative Extension Service, University of Georgia, Oglethorpe, GA 31068
Rebekah D. Wallace
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794
A. Stanley Culpepper
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31794
*
Corresponding author's E-mail: [email protected]

Abstract

In 2006, Palmer amaranth with confirmed resistance to glyphosate (GLY-R) was not controlled effectively in cotton with pyrithiobac, an acetolactate synthase (ALS)-inhibiting herbicide. Glyphosate at 870 g ae ha−1 or pyrithiobac at 70 g ai ha−1 applied postemergence provided 5 to 28% control of a putative GLY/ALS-R Palmer amaranth biotype in the field. Glyphosate at 6,930 g ha−1 and pyrithiobac at 420 g ha−1 applied alone provided no more than 89 and 65% control 1 to 8 wk after treatment (WAT), respectively. When applied as a tank mixture, glyphosate plus pyrithiobac at 870 + 70 g ha−1 provided between 16 and 41% control; glyphosate plus pyrithiobac at 6,930 + 420 g ha−1 controlled the Palmer amaranth in the field 89 to 95%. Dose-response analyses developed from greenhouse data indicated that the estimated glyphosate rates required to produce 50% injury and reduce plant fresh weights by 50% relative to the nontreated control in a suspected GLY/ALS-R Palmer amaranth biotype were 12 and 14 times greater, respectively, than the estimated values for the susceptible (S) biotype. The predicted pyrithiobac rates required to produce the same responses in the putative resistant population were 151 (50% injury) and 563 times (50% fresh weight reduction) greater than the estimated rates for the S biotype. Field and greenhouse analyses confirm that the Palmer amaranth biotype evaluated in both studies is resistant to glyphosate and an ALS-inhibiting herbicide.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bensch, C. N., Horak, M. J., and Peterson, D. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. Palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci. 51:3743.Google Scholar
Bond, R. C., Nandula, V. K., and Reddy, K. N. 2010. ALS resistance in glyphosate-resistant palmer amaranth biotypes from Mississippi. Proc. South Weed Sci. Soc. 63:84.Google Scholar
Burgos, N. R., Yong-In, K., and Talbert, R. E. 2001. Amaranthus palmeri resistance and differential tolerance of Amaranthus palmeri and Amaranthus hybridus to ALS-inhibitor herbicides. Pest. Manag. Sci. 57:449457.Google Scholar
Burke, I. C., Schroeder, M., Thomas, W. E., and Wilcut, J. W. 2007. Palmer amaranth interference and seed production in peanut. Weed Technol. 21:367371.Google Scholar
Costea, M., Weaver, S. E., and Tardif, F. J. 2004. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Can. J. Plant Sci. 84:631668.Google Scholar
Costea, M., Weaver, S. E., and Tardif, F. J. 2005. The biology of invasive alien plants in Canada. 3. Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea & Tardif. Can. J. Plant Sci. 85:507522.Google Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.Google Scholar
Culpepper, A. S., York, A. C., MacRae, A. W., and Kichler, J. 2008. Glyphosate-resistant Palmer amaranth response to weed management programs in Roundup Ready and Liberty Link Cotton. Page 1689 in Proceedings of the Beltwide Cotton Conferences. Memphis, TN: National Cotton Council.Google Scholar
Diebold, R. S., McNaughton, K. E., Lee, E. A., and Tardif, F. J. 2003. Multiple resistance to imazethapyr and atrazine in Powell amaranth (Amaranthus powellii). Weed Sci. 51:312318.Google Scholar
Foes, M. J., Liu, L. X., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46:514520.Google Scholar
Frans, R. E., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 2946 in Camper, N. D., ed. Research Methods in Weed Science. Champaign, IL Southern Weed Science Society.Google Scholar
Franssen, A. S., Skinner, D. Z., Al-Khatib, K., Horak, M. J., and Kulakow, P. A. 2001. Interspecific hybridization and gene flow of ALS resistance in Amaranthus species. Weed Sci. 49:598606.Google Scholar
Gaeddert, J. W., Peterson, D. E., and Horak, M. J. 1997. Control and cross-resistance of an acetolactate synthase inhibitor-resistant Palmer amaranth (Amaranthus palmeri) biotype. Weed Technol. 11:132137.Google Scholar
Gaines, T. A., Zhang, W., Wang, D., et al. 2010. Gene amplification confers glyphosate resistance in Amaranthus palmeri . Proc. Natl. Acad. Sci. U.S.A. 107:10291034.Google Scholar
Heap, I. M. 2010. International Survey of Herbicide Resistant Weeds. www.weedscience.org. Accessed: August 27, 2010.Google Scholar
Horak, M. J. and Peterson, D. E. 1995. Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol. 9:192195.Google Scholar
Jasieniuk, M., Brûlé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.Google Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus Palmeri) interference in soybeans (Glycine max). Weed Sci. 42:523527.Google Scholar
Legleiter, T. R. and Bradley, K. W. 2008. Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci. 56:582587.Google Scholar
Marshall, M. W. 2009. Complementary herbicide programs for Palmer amaranth (Amaranthus palmeri S. Wats.) control in glyphosate-tolerant cotton and soybeans. Abstr. Weed Sci. Soc. Am. 49:99.Google Scholar
Massinga, R. A., Currie, R. S., Horak, M. J., and Boyer, J. 2001. Interference of Palmer amaranth in corn. Weed Sci. 49:202208.Google Scholar
Menges, R. M. 1987. Weed seed population dynamics during six years of weed management systems in crop rotations on irrigated soil. Weed Sci. 35:328332.Google Scholar
Moore, J. W., Murray, D. S., and Westerman, R. B. 2004. Palmer amaranth (Amaranthus Palmeri) effects on the harvest and yield of grain sorghum (Sorghum bicolor). Weed Technol. 18:2329.Google Scholar
Morgan, G. D., Baumann, P. A., and Chandler, J. M. 2001. Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technol. 15:408412.Google Scholar
Norsworthy, J. K., Griffith, G. M., Scott, R. C., Smith, K. L., and Oliver, L. R. 2008. Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol. 22:108113.Google Scholar
Rowland, M. W., Murray, D. S., and Verhalen, L. M. 1999. Full-season Palmer Amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 47:305309.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Smith, D. T., Baker, R. V., and Steele, G. L. 2000. Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol. 14:122126.Google Scholar
Sosnoskie, L. M., Webster, T. M., MacRae, A., Grey, T. L., and Culpepper, A. S. 2009. Movement of glyphosate-resistant palmer amaranth pollen in-field. Abstr. Weed Sci. Soc. Am. 49:63.Google Scholar
Vencill, W. K., Prostko, E. P., and Webster, T. E. 2002. Is Palmer amaranth (Amaranthus palmeri) resistant to ALS and dinitroaniline herbicides? Proc. South. Weed. Sci. Soc. 55:189.Google Scholar
Webster, T. M. 2009. Weed survey - southern states: broadleaf crops subsection. Proc. South. Weed Sci. Soc. 62:509524.Google Scholar
Wetzel, D. K., Horak, M. J., Skinner, D. Z., and Kulakow, P. A. 1999. Transferal of herbicide resistance traits from Amaranthus palmeri to Amaranthus rudis . Weed Sci. 47:538543.Google Scholar
Wise, A. M., Grey, T. L., Prostko, E. P., Vencill, W. K., and Webster, T. M. 2009. Establishing the geographic distribution level of acetolactate synthase resistance of Palmer amaranth (Amaranthus Palmeri) accessions in Georgia. Weed Technol. 23:214220.Google Scholar
York, A. C. 2007. Updates from states (situation, distribution, impacts, research efforts): North Carolina. Page 4 in McClelland, M., ed. 2007 Managing Glyphosate-Resistant Palmer Amaranth Roundtable. Little Rock, AR: Cotton Incorporated. http://www.cottoninc.com/2007%2DGlyphosate%2DResistant%2DPalmer%2DAmaranth/?S=AgriculturalResearch. Accessed: February 15, 2010.Google Scholar