Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T18:42:29.909Z Has data issue: false hasContentIssue false

Mechanism of Resistance and Inheritance in Glyphosate Resistant Palmer amaranth (Amaranthus palmeri) Populations from New Mexico, USA

Published online by Cambridge University Press:  20 January 2017

Mohsen Mohseni-Moghadam
Affiliation:
Department of Plant and Environmental Sciences
Jill Schroeder
Affiliation:
Department of Entomology, Plant Pathology and Weed Science
Jamshid Ashigh*
Affiliation:
Department of Extension Plant Sciences, all of New Mexico State University, Las Cruces, NM 88003
*
Corresponding author's E-mail: [email protected]

Abstract

Two populations of Palmer amaranth from New Mexico have been confirmed to be resistant to glyphosate. In the present study, the molecular basis of resistance and the mode of inheritance of resistance in those populations were investigated. Quantitative real-time polymerase chain reaction analysis indicated up to an eightfold increase in genomic EPSPS copy number in glyphosate resistant plants compared with susceptible plants. The relative genomic EPSPS copy number of resistant plants was positively correlated with the relative EPSPS cDNA expression levels. Eight hours after treatment with glyphosate, the shikimate accumulation levels in resistant plants were negatively correlated with the genomic EPSPS copy numbers. Multiple sequencing of the EPSPS cDNA of resistant plants did not reveal any glyphosate resistance-conferring mutations. The evaluation of F1, reciprocal F1, and F2 Palmer amaranth families indicated that resistance to glyphosate does not follow a single-gene segregation pattern. Results suggest that the EPSPS amplification is the primary molecular basis of resistance in glyphosate resistant populations of Palmer amaranth from New Mexico.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baerson, S. R., Rodriguez, D. J., Tran, M., Feng, Y., Biest, N. A., and Dill, G. M. 2002. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phophsate synthase. Plant Physiol. 129:12651275.CrossRefGoogle ScholarPubMed
Bowley, S. R. 1999. A Hitchhiker's Guide to Statistics in Plant Biology. Guelph, ON, Canada Plants et al. Inc. 250 p.Google Scholar
Chandi, A., Milla-Lewis, S. R., Giacomini, D., Westra, P., Preston, C., Jordan, D. L., York, A. C., Burton, J. D., and Whitaker, J. R. 2012. Inheritance of evolved glyphosate resistance in a North Carolina Palmer amaranth (Amaranthus palmeri) biotype. Int. J. Agronomy. DOI:10.1155/2012/176108CrossRefGoogle Scholar
Coruzzi, G. and Last, R. 2000. Amino acids. Pages 358410 in Buchanan, B. B., Gruissem, W., and Jones, R. L., eds. Biochemistry and Molecular Biology of Plants. Rockville, MD American Society of Plant Physiologists.Google Scholar
Cousens, R. D., Gill, G. S., and Speijers, E. J. 1997. Comment: number of sample populations required to determine the effects of herbicide resistance on plant growth and fitness. Weed Res. 37:14.CrossRefGoogle Scholar
Cromartie, T. H. and Polge, N. D. 2000. An improved assay for shikimic acid and its use as a monitor for the activity of sulfosate. Proc. Weed Sci. Soc. Amer. 40:291.Google Scholar
Culpepper, A. S., Grey, T. L., Vencill, W. K., Kichler, J. M., Webster, T. M., Brown, S. M., York, A. C., Davis, J. W., and Hanna, W. W. 2006. Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci. 54:620626.CrossRefGoogle Scholar
Dinelli, G., Marotti, I., Bonetti, A., Catizone, P., Urbano, J. M., and Barnes, J. 2008. Physiological and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain. Weed Res. 48:257265.CrossRefGoogle Scholar
Dinelli, G., Marotti, I., Bonetti, A., Minelli, M., Catizone, P., and Barnes, J. 2006. Physiological and molecular insight on the mechanisms of resistance to glyphosate in Conyza canadensis (L.) Cronq. biotypes. Pestic. Biochem. Physiol. 86:3041.CrossRefGoogle Scholar
Duke, S. O. 1988. Glyphosate. Pages 170 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation, and Mode of Action. Volume 3. New York Marcel Dekkesr, Inc.Google Scholar
Field, L. M., Devonshire, A. L., and Forde, B. G. 1988. Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem. J. 251:309312.CrossRefGoogle ScholarPubMed
Gaines, T. A., Shaner, D. L., Ward, S. M., Leach, J. E., Preston, C., and Westra, P. 2011. Mechanism of resistance of evolved glyphosate-resistant Palmer amaranth (Amaranthus palmeri). J. Agric. Food Chem. 59:58865889.CrossRefGoogle ScholarPubMed
Gaines, T. A., Zhang, W., Wang, D., Bukuna, B., Chisholm, S. T., Shaner, D. L., Nissen, S. J., Patzoldt, W. L., Tranel, P. J., Culpepper, A. S., Grey, T. L., Webster, T. M., Vencill, W. K., Sammons, R. D., Jiang, J., Preston, C., Leach, J. E., and Westra, P. 2010. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc. Natl. Acad. Sci. 107:10291034.CrossRefGoogle ScholarPubMed
Gasser, C. S., Winter, J. A., Hironaka, C. M., and Shah, D. M. 1988. Structure, expression, and evolution of the 5-enolpyruvylshikimate-3-phosphate synthase genes of petunia and tomato. J. Biol. Chem. 263:42804289.CrossRefGoogle ScholarPubMed
Ge, X., d'Avignon, D. A., Ackerman, J.J.H., and Sammons, R. D. 2010. Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Manag. Sci. 66:345348.CrossRefGoogle ScholarPubMed
Giacomini, D. A., Ward, S., Gaines, T. A., and Westra, P. 2011. Inheritance of EPSPS gene amplification in Palmer amaranth. Abstracts of the Weed Science Society of America 2011 Annual Meeting. http://wssaabstracts.com/public/4/abstract-85.html. Accessed January 10, 2013.Google Scholar
Heap, I. 2013. The International Survey of Herbicide-Resistant Weeds. www.weedscience.org. Accessed January 10, 2013.Google Scholar
Jasieniuk, M., Brûlé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.CrossRefGoogle Scholar
Kidwell, M. G. and Lisch, D. R. 2001. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution Int. J. Org. Evolution 55:124.Google ScholarPubMed
Koger, C. H., Poston, D. H., Hayes, R. M., and Montgomery, R. F. 2004. Glyphosate-resistant horseweed (Conyza canadensis) in Mississippi. Weed Technol. 18:820825.CrossRefGoogle Scholar
Koger, C. H. and Reddy, K. N. 2005. Role of absorption and translocation in the mechanism of glyphosate resistance in horseweed (Conyza canadensis). Weed Sci. 53:8489.CrossRefGoogle Scholar
Lee, L. J. and Ngim, J. 2000. A first report of glyphosate-resistant goosegrass (Eleusine indica L. Gaertn) in Malaysia. Pest Manag. Sci. 56:336339.3.0.CO;2-8>CrossRefGoogle Scholar
Lisch, D. 2009. Epigenetic regulation of transposable elements in plants. Annu. Rev. Plant Biol. 60:4366.CrossRefGoogle ScholarPubMed
Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402408.CrossRefGoogle Scholar
Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., Hollinshead, P. H., Warner, S.A.J., and Presten, C. 2002. Investigations into the mechanism of glyphosate resistance in Lolium rigidum . Pest. Biochem. Physiol. 74:6272.CrossRefGoogle Scholar
Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., and Preston, C. 2001. Inheritance of evolved glyphosate resistance in Lolium rigidum (Gaud.). Theor. Appl. Genet. 102:545550.CrossRefGoogle Scholar
Maxwell, B. D. and Mortimer, A. M. 1994. Selection of herbicide resistance. Pages 127 in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants, Biology and Biochemistry. Boca Raton, FL CRC Lewis.Google Scholar
Mohseni-Moghadam, M., Schroeder, J., Heerema, R., and Ashigh, J. 2013. Resistance to glyphosate in Palmer amaranth (Amaranthus palmeri) populations from New Mexico pecan orchards. Weed Technol. 27:8591.CrossRefGoogle Scholar
Mouches, C., Pasteur, N., Berge, J. B., Hyrien, O., Raymond, M., de Saint Vincent, B. R., de Silvestri, M., and Georghiou, G. P. 1986. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science 233:778780.CrossRefGoogle Scholar
Ng, C. H., Ratnam, W., Surif, S., and Ismail, B. S. 2004. Inheritance of glyphosate resistance in goosegrass (Eleusine indica). Weed Sci. 52:564570.CrossRefGoogle Scholar
Padgette, S. R., Re, D. B., Barry, G. F., Eichholtz, D. E., Delannay, X., Fuchs, R. L., Kishore, G. M., and Fraley, R. T. 1996. New weed control opportunities: development of soybeans with a Roundup Ready gene. Pages 5384 in Duke, S. O., ed. Herbicide-Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technological Aspects. Boca Raton, FL CRC Lewis.Google Scholar
Perez, A. and Kogan, M. 2003. Glyphosate-resistant Lolium multiflorum in Chilean orchards. Weed Res. 43:1219.CrossRefGoogle Scholar
Perez-Jones, A., Park, K. W., Colquhoun, J., Mallory-Smith, C. A., and Shaner, D. 2005. Identification of glyphosate-resistant Italian ryegrass (Lolium multiflorum) in Oregon. Weed Sci. 53:775779.CrossRefGoogle Scholar
Perez-Jones, A., Park, K. W., Polge, N., Colquhoun, J., and Mallory-Smith, C. A. 2007. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum . Planta. 226:395404.CrossRefGoogle ScholarPubMed
Powles, S. B. 2008. Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag. Sci. 64:360365.CrossRefGoogle ScholarPubMed
Powles, S. B., Lorraine-Colwill, D. F., Dellow, J. J., and Preston, C. 1998. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 46:604607.CrossRefGoogle Scholar
Ribeiro, D. N., Dayan, F. E., Pan, Z., Duke, S. O., Shaw, D. R., Nandula, V. K., and Baldwin, B. S. 2011. EPSPS gene amplification inheritance in glyphosate resistant Amaranthus palmeri from Mississippi. Page 137 in 2011 Proc. of the South. Weed Sci. Soc. Las Cruces, NM Southern Weed Science Society.Google Scholar
Ribeiro, D. N., Pan, Z., Dayan, F. E., Duke, S. O., Nadula, V. K., Shaw, D. R., and Baldwin, B. S. 2012. Apomixis involvement in inheritance of glyphosate resistance in Amaranthus palmeri from Mississippi. Abstracts of the Weed Science Society of America 2012 Annual Meeting. http://wssaabstracts.com/public/9/abstract-438.html. Accessed January 12, 2013.Google Scholar
Salas, R. A., Dayan, F. E., Pan, Z., Watson, S. B., Dickson, J. W., Scott, R. C., and Burgos, N. R. 2012. EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) from Arkansas. Pest Manag. Sci. 68:12231230.CrossRefGoogle ScholarPubMed
Shaner, D. L., Nadler-Hassar, T., Henry, W. B., and Koger, C. H. 2005. A rapid in vivo shikimate accumulation assay with excised leaf discs. Weed Sci. 53:769774.CrossRefGoogle Scholar
Simarmata, M., Bughrara, S., and Penner, D. 2005. Inheritance of glyphosate resistance in rigid ryegrass (Lolium rigidum) from California. Weed Sci. 53:615619.CrossRefGoogle Scholar
Simarmata, M. and Penner, D. 2008. The basis for glyphosate resistance in rigid ryegrass (Lolium rigidum) from California. Weed Sci. 56:181188.CrossRefGoogle Scholar
Steckel, L. E., Main, C. L., Ellis, A. T., and Mueller, T. C. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low-level glyphosate resistance. Weed Technol. 22:119123.CrossRefGoogle Scholar
Tranel, P. J., Jiang, W. L., Patzoldt, W. L., and Wright, T. R. 2004. Intraspecific variability of the acetolactate synthase gene. Weed Sci. 52:236241.CrossRefGoogle Scholar
Trucco, F., Jeschke, M. R., Rayburn, A. L., and Tranel, P. J. 2005. Promiscuity in weedy amaranths: high frequency of female tall waterhemp (Amaranthus tuberculatus) × smooth pigweed (A. hybridus) hybridization under field conditions. Weed Sci. 53:4654.CrossRefGoogle Scholar
Urbano, J. M., Borrego, A., Torres, V., Leon, J. M., Jimenez, C., Dinelli, G., and Barnes, J. 2007. Glyphosate-resistant hairy fleabane (Conyza bonariensis) in Spain. Weed Technol. 21:396401.CrossRefGoogle Scholar
VanGessel, M. J. 2001. Glyphosate-resistant horseweed from Delaware. Weed Sci. 49:703705.CrossRefGoogle Scholar
Wakelin, A. M., Lorraine-Colwill, D. F., and Preston, C. 2004. Glyphosate resistance in four different populations of Lolium rigidum is associated with reduced translocation of glyphosate to meristematic zones. Weed Res. 44:453459.CrossRefGoogle Scholar
Wakelin, A. M. and Preston, C. 2006a. A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res. 46:432440.CrossRefGoogle Scholar
Wakelin, A. M. and Preston, C. 2006b. Inheritance of glyphosate resistance in several populations of rigid ryegrass (Lolium rigidum) from Australia. Weed Sci. 54:212219.CrossRefGoogle Scholar
Wiersma, S. T., Chisholm, S. T., Godar, A. S., Stahlman, P. W., Leach, J., and Westra, P. 2012. Gene amplification of EPSP synthase in glyphosate resistant Kochia scoparia . Page 97 in 2012 Proc. of Western Soc. of Weed Sci. Las Cruces, NM Western Society of Weed Science.Google Scholar
Woodburn, A. T. 2000. Glyphosate: production, pricing and use worldwide. Pest Manag. Sci. 56:309312.3.0.CO;2-C>CrossRefGoogle Scholar
Yu, Q., Cairns, A., and Powles, S. 2007. Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta 225:499513.CrossRefGoogle Scholar
Zelaya, I. A., Owen, M.D.K., and VanGessel, M. J. 2004. Inheritance of evolved glyphosate resistance in Conyza Canadensis (L.) Cronq. Theor. Appl. Genet. 110:5870.CrossRefGoogle ScholarPubMed