Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T00:17:31.289Z Has data issue: false hasContentIssue false

Interactions Between Selected Herbicides and Protectants on Corn (Zea mays)

Published online by Cambridge University Press:  12 June 2017

Kriton K. Hatzios*
Affiliation:
Dep. Plant Pathol., and Physiol., Virginia Polytech. Inst. and State Univ., Blacksburg, VA 24061

Abstract

Greenhouse studies were initiated to determine the efficacy of four herbicide antidotes as protectants of corn (Zea mays L., ‘DeKalb XL72AA’ and ‘DeKalb XL67′) against injury from preemergence or early postemergence applications of the herbicides chlorsulfuron {2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] carbonyl] benzenesulfonamide}, fluazifop-butyl {butyl-2-[4-[5-(trifluoromethyl-2-pyridinyl)oxy] phenoxy] propanoate}, or BAS 9052 OH {2-[1-(ethoxyimino)-butyl]-5-[2-(ethylthio)-propyl]-3-hydroxy-2-cyclohexene-1-one}. NA (1,8-naphthalic anhydride) was the most effective of the four antidotes in protecting corn against injury from preemergence applications of chlorsulfuron. CGA-43089 [α-(cyanomethoxy)-imino-benzeneacetonitrile] and CGA-92194 [α-(1,3-dioxolan-2-yl-methoxy)-imino-benzeneacetonitrile] partially protected corn from chlorsulfuron injury, whereas R-25788 (N,N-diallyl-2,2-dichloroacetamide] was the least effective. R-25788 offered partial to good protection to corn against injury from preemergence applications of fluazifop-butyl and BAS 9052 OH. NA, or CGA-43089, and CGA-92194 partially protected corn from fluazifop-butyl injury but their efficacy against BAS 9052 OH injury to corn was limited. In general, all four antidotes offered better protection to the thiocarbamate-tolerant ‘XL72AA’ hybrid than to the thiocarbamate-susceptible ‘XL67’ hybrid. With the exception of NA, which partially protected corn from postemergence-applied chlorsulfuron, none of the four herbicide antidotes was effective in protecting corn against injury from postemergence applications of any of the three herbicides.

Type
Weed Control and Herbicide Technology
Copyright
Copyright © 1984 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ashton, F. M. and Crafts, A. S. 1981. Mode of Action of Herbicides. 2nd ed., John Wiley, New York. 525 pp.Google Scholar
2. Blair, A. M., Parker, C., and Kasasian, L. 1976. Herbicide protectants and antidotes–A review. Pest Artic. News Summ. 22:6574.Google Scholar
3. Carringer, R. D., Rieck, C. E., and Bush, L. P. 1979. Effect of R-25788 on EPTC metabolism in corn (Zea mays L.). Weed Sci. 26:167171.CrossRefGoogle Scholar
4. Davidson, W. E., Gagnon, S. A., Christensen, M. D., and Dorr, J. E. 1978. A new herbicide safener which permits effective grass control in sorghum. Proc. West. Soc. Weed Sci. 31:123129.Google Scholar
5. Eastin, E. F. 1972. Evaluation of a sorghum seed treatment to prevent injury from acetanilide herbicides. Agron. J. 64:556557.Google Scholar
6. Ezra, G., Krochmal, E., and Gressel, J. 1982. Competition between a thiocarbamate herbicide and herbicide protectants at the level of uptake into maize cells in culture. Pestic. Biochem. Physiol. 18:107112.Google Scholar
7. Gressel, J., Ezra, G., and Jain, S. M. 1982. Genetic and chemical manipulation of crops to confer tolerance to chemicals. Pages 7991 in McLaren, J. D., ed. Chemical Manipulation of Crop Growth and Development. Butterworths, London.CrossRefGoogle Scholar
8. Guneyli, E. 1971. Factors affecting the action of 1,8-naphthalic anhydride in corn treated with S-ethyl-dipropylthiocarbamate (EPTC). Diss. Abstr. Int. (B) 32:19571958.Google Scholar
9. Gupta, O. P. 1976. Adsorbents and antidotes offer a breakthrough in weed control. World Crops 28:134138.Google Scholar
10. Hatzios, K. K. 1982. Effects of sethoxydim on the metabolism of isolated leaf cells of soybean [Glycine max (L.) Merr.]. Plant Cell Reports 1:8790.CrossRefGoogle Scholar
11. Hatzios, K. K. 1983. Herbicide antidotes: Development, chemistry, and mode of action. Advan. Agron. 36:265314.Google Scholar
12. Hatzios, K. K. and Howe, C. M. 1982. Influence of the herbicides hexazinone and chlorsulfuron on the metabolism of isolated soybean leaf cells. Pestic. Biochem. Physiol. 17:207214.Google Scholar
13. Hatzios, K. K. and Penner, D. 1982. Metabolism of Herbicides in Higher Plants. Burgess Publishing Company, Minneapolis, MN. 142 pp.Google Scholar
14. Hoffman, O. L. 1962. Chemical seed treatments as herbicide antidotes. Weeds 10:322323.Google Scholar
15. Hoffman, O. L. 1978. Herbicide antidotes: Concept to crop. Chemtech 8:448492.Google Scholar
16. Komives, T. and Dutka, F. 1980. On the mode of EPTC and its antidotes on corn. Cereal Res. Commun. 8:627633.Google Scholar
17. Lay, M. M. and Casida, J. E. 1976. Dichloroacetamide antidotes enhance thiocarbamate sulfoxide detoxication by elevating corn root glutathione content and glutathione-S-transferase activity. Pestic. Biochem. Physiol. 6:442456.Google Scholar
18. Leavitt, J. R. C. and Penner, D. 1979. The in vitro conjugation of glutathione and other thiols with acetanilide herbicides and EPTC sulfoxide and the action of the herbicide antidote R-24788. J. Agric. Food Chem. 27:533536.Google Scholar
19. Levitt, G., Ploeg, H. L., Weigel, R. C. Jr., and Fitzgerald, D. T. 1981. 2-chloro-N-[4-methoxy-6-methyl-1,3,5-triazin-2-yl)-amino carbonyl] benzenesulfonamide, a new herbicide. J. Agric. Food Chem. 29:416418.CrossRefGoogle Scholar
20. McAvoy, W. J., Hendrick, L. W., Veenstra, M. A., Sciarappa, W. J., Schroeder, M., and Tasker, A. 1980. Selective postemergence perennial grass control with BAS 9052 OH. Abstr. Weed Sci. Soc. Am., p. 1314.Google Scholar
21. Nash, R. G. 1981. Phytotoxic interaction studies–Techniques for evaluation and presentation of results. Weed Sci. 29:147155.Google Scholar
22. Pallos, F. M. and Casida, J. E. 1978. Chemistry and Action of Herbicide Antidotes. Academic Press, New York. 171 pp.Google Scholar
23. Parker, C. 1981. Possibilities for the selective control of Rottboelia exaltata in cereals with the help of herbicide safeners. Trop. Pest. Manag. 2:139140.CrossRefGoogle Scholar
24. Parker, C. and Dean, M. L. 1976. Control of wild rice in rice. Pestic. Sci. 7:403416.Google Scholar
25. Parker, C. W., Richardson, W. G., and West, T. M. 1980. Potential for extending the selectivity of DPX-4189 by use of herbicide safeners. Proc. 1980 Brit. Crop Prot. Conf.–Weeds 1:1521.Google Scholar
26. Pearson, J. O. 1980. Postemergence graminicide for broadleaf crops. Abstr. Weed Sci. Soc. Am., p. 114.Google Scholar
27. Plowman, R. E., Stonebridge, W. C., and Hawtree, J. N. 1980. Fluazifop-butyl – A new selective herbicide for the control of annual and perennial grass weeds. Proc. 1980 Brit. Crop Prot. Conf.–Weeds 1:2937.Google Scholar
28. Putnam, A. R. and Penner, D. 1974. Pesticide interactions in higher plants. Residue Rev. 50:73110.Google Scholar
29. Ray, T. B. 1982. The mode of action of chlorsulfuron: A new herbicide for cereals. Pestic. Biochem. Physiol. 17:1017.Google Scholar
30. Ray, T. B. 1982. The mode of action of chlorsulfuron: The lack of direct inhibition of plant DNA synthesis. Pestic. Biochem. Physiol. 18:262266.Google Scholar
31. Sweetser, P. B., Schow, G. S., and Hutchison, J. M. 1982. Metabolism of chlorsulfuron by plants: Biological basis for selectivity of a new herbicide for cereals. Pestic. Biochem. Physiol. 17:1823.Google Scholar
32. Swisher, A. and Corbin, F. T. 1982. Behavior of BAS-9052 OH in soybean (Glycine max) and johnsongrass (Sorghum halepense) plant and cell cultures. Weed Sci. 30:640650.Google Scholar
33. Steel, R. G. D. and Torrie, T. H. 1960. Principles and Procedures of Statistics. McGraw-Hill, New York. 481 pp.Google Scholar
34. Stephenson, G. R., Bunce, N. J., Makowski, R. I., and Curry, J. C. 1978. Structure-activity relationships for S-ethyl N,N-dipropylthiocarbamate (EPTC) antidotes in corn. J. Agric. Food Chem. 26:137140.Google Scholar
35. Wilkinson, R. E. and Smith, A. E. 1975. Reversal of EPTC induced fatty acid synthesis inhibition. Weed Sci. 23:9092.Google Scholar