Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T08:24:33.020Z Has data issue: false hasContentIssue false

Importance of the P106S Target-Site Mutation in Conferring Resistance to Glyphosate in a Goosegrass (Eleusine indica) Population from the Philippines

Published online by Cambridge University Press:  20 January 2017

Shiv S. Kaundun*
Affiliation:
Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
Ian A. Zelaya
Affiliation:
Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
Richard P. Dale
Affiliation:
Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
Amy J. Lycett
Affiliation:
Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
Patrice Carter
Affiliation:
Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
Kate R. Sharples
Affiliation:
Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
Eddie McIndoe
Affiliation:
Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
*
Corresponding author's E-mail: [email protected]

Abstract

Few studies on herbicide resistance report data to establish unambiguously the correlation between genotype and phenotype. Here we report on the importance of the EPSPS prolyl106 point mutation to serine (P106S) in conferring resistance to glyphosate in a goosegrass population from Davao, Mindanao Island, the Philippines (Davao). Initial rate-response studies showed clear survivors within the Davao population at glyphosate rates that completely controlled the standard sensitive goosegrass population (STD1). Assessment of potential resistance mechanisms identified the presence of P106S mutant individuals in the Davao population. Polymerase chain reaction (PCR) amplification of specific alleles (PASA) analysis established that the mixed-resistant Davao population was comprised of 39.1% homozygous proline wild-type (PP106), 3.3% heterozygous serine mutant (PS106), and 57.6% homozygous serine mutant (SS106) genotypes. Further rate-response studies on plants with a predetermined genotype estimated the Davao SS106 individuals to be approximately 2-fold more resistant to glyphosate compared to Davao PP106 individuals. Extensive analysis at different goosegrass growth stages and glyphosate rates established strong correlation (P < 0.001) between presence of P106S in EPSPS and the resistant phenotype. Importantly, no differences in the pattern of absorbed or translocated 14C–glyphosate were observed between PP106 and SS106 Davao genotypes or Davao and STD1 individuals, suggesting that glyphosate resistance in the Davao population was attributable to an altered target site mechanism. This study demonstrates that whilst P106S in EPSPS confers a moderate resistance level to glyphosate, the mechanism is sufficient to endow glyphosate failure at the recommended field rates.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, K. S., Sikorski, J. A., and Johnson, K. A. 1988. Evaluation of 5-enolpyruvoylshikimate-3-phosphate synthase substrate and inhibitor binding by stopped-flow and equilibrium fluorescence measurements. Biochemistry. 27:16041610.Google Scholar
Baerson, S. R., Rodriguez, D. J., Biest, N. A., Tran, M., You, J., Kreuger, R. W., Dill, G. M., Pratley, J. E., and Gruys, K. J. 2002a. Investigating the mechanism of glyphosate resistance in rigid ryegrass (Lolium rigidum). Weed Sci. 50:721730.CrossRefGoogle Scholar
Baerson, S. R., Rodriguez, D. J., Tran, M., Feng, Y., Biest, N. A., and Dill, G. M. 2002b. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129:12651275.CrossRefGoogle ScholarPubMed
Bottema, C. D. and Sommer, S. S. 1993. PCR amplification of specific alleles: rapid detection of known mutations and polymorphisms. Mutat. Res. 288:93102.CrossRefGoogle ScholarPubMed
Bradshaw, L. D., Padgette, S. R., Kimball, S. L., and Wells, B. H. 1997. Perspectives on glyphosate resistance. Weed Technology. 11:189198.Google Scholar
Comai, L., Facciotti, D., Hiatt, W. R., Thompson, G., Rose, R. E., and Stalker, D. M. 1985. Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature. 317:741745.Google Scholar
Comai, L., Sen, L. C., and Stalker, D. M. 1983. An altered aroA gene product confers resistance to the herbicide glyphosate. Science. 221:370371.CrossRefGoogle Scholar
Dinelli, G., Marotti, I., Bonetti, A., Minelli, M., Catizone, P., and Barnes, J. 2006. Physiological and molecular insight on the mechanisms of resistance to glyphosate in Conyza canadensis (L.) Cronq. biotypes. Pestic. Biochem. Physiol. 86:3041.CrossRefGoogle Scholar
Duke, S. O. and Powles, S. B. 2008. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64:319325.CrossRefGoogle ScholarPubMed
Feng, P. C. C., Tran, M., Chiu, T., Sammons, R. D., Heck, G. R., and CaJacob, C. A. 2004. Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolism. Weed Sci. 52:498505.Google Scholar
Franz, J. E., Mao, M. K., and Sikorski, J. A. 1997. Glyphosate: A Unique Global Herbicide. Washington, DC American Chemical Society. 678.Google Scholar
He, M., Nie, Y. F., and Xu, P. 2003. A T42M substitution in bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) generates enzymes with increased resistance to glyphosate. Biosci. Biotechnol. Biochem. 67:14051409.Google Scholar
Heap, I. 2008. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com/. Accessed March 4, 2008.Google Scholar
Holländer, H. and Amrhein, N. 1980. The site of the inhibition of the shikimate pathway by glyphosate. I. Inhibition by glyphosate of phenylpropanoid synthesis in buckwheat (Fagopyrum esculentum Moench). Plant Physiol. 66:823829.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds—Distribution and Biology. Honolulu, HA The University Press of Hawaii. 609.Google Scholar
Jasieniuk, M. 1985. Constraints on the evolution of glyphosate resistance in weeds. Resistant Pest Manag. Newsl. 7:3132.Google Scholar
Jaworski, E. G. 1972. Mode of action of N-phosphonomethylglycine. Inhibition of aromatic amino acid biosynthesis. J. Agric. Food Chem. 20:11951198.CrossRefGoogle Scholar
Kahrizi, D., Salmanian, A. H., Afshari, A., Moieni, A., and Mousavi, A. 2007. Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate. Plant Cell Rep. 26:95104.Google Scholar
Kishore, G. M., Brundage, L., Kolk, K., Padgette, S. R., Rochester, D., Huynh, K., and della-Cioppa, G. 1986. Isolation, purification and characterization of a glyphosate tolerant mutant E. coli EPSP synthase. Proc. Fed. Am. Soc. Exp. Biol. 45:1506–1506.Google Scholar
Kishore, G. M. and Shah, D. M. 1988. Amino acid biosynthesis inhibitors as herbicides. Annu. Rev. Biochem. 57:627663.Google Scholar
Klee, H. J., Muskopf, Y. M., and Gasser, C. S. 1987. Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Mol. Gen. Genet. 210:437442.CrossRefGoogle ScholarPubMed
Koger, C. H. and Reddy, K. N. 2005. Role of absorption and translocation in the mechanism of glyphosate resistance in horseweed (Conyza canadensis). Weed Sci. 53:8489.Google Scholar
Krekel, F., Oecking, C., Amrhein, N., and Macheroux, P. 1999. Substrate and inhibitor-induced conformational changes in the structurally related enzymes UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS). Biochemistry. 38:88648878.CrossRefGoogle ScholarPubMed
Lee, L. J. and Ngim, J. 2000. A first report of glyphosate-resistant goosegrass (Eleusine indica (L) Gaertn) in Malaysia. Pest Manag. Sci. 56:336339.Google Scholar
Liu, Q., Thorland, E. C., Heit, J. A., and Sommer, S. S. 1997. Overlapping PCR for bidirectional PCR amplification of specific alleles: a rapid one-tube method for simultaneously differentiating homozygotes and heterozygotes. Genome Res. 7:389398.Google Scholar
Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., Hollinshead, P. H., Warner, S. A. J., and Preston, C. 2003. Investigations into the mechanism of glyphosate resistance in Lolium rigidum . Pestic. Biochem. Physiol. 74:6272.Google Scholar
Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., and Preston, C. 2001. Inheritance of evolved glyphosate resistance in Lolium rigidum (Gaud.). Theor. Appl. Genet. 102:545550.Google Scholar
Michitte, P., de Prado, R., Espinosa, N., and Gauvrit, C. 2005. Glyphosate resistance in a Chilean Lolium multiflorum . Commun. Agric. Appl. Biol. Sci. 70:507513.Google Scholar
Nail, E. L., Young, D. L., and Schillinger, W. F. 2007. Diesel and glyphosate price changes benefit the economics of conservation tillage versus traditional tillage. Soil Tillage Res. 94:321327.CrossRefGoogle Scholar
Ng, C. H., Ratnam, W., Surif, S., and Ismail, B. S. 2004a. Inheritance of glyphosate resistance in goosegrass (Eleusine indica). Weed Sci. 52:564570.Google Scholar
Ng, C. H., Wickneswari, R., Salmijah, S., Teng, Y. T., and Ismail, B. S. 2003. Gene polymorphisms in glyphosate-resistant and -susceptible biotypes of Eleusine indica from Malaysia. Weed Res. 43:108115.Google Scholar
Ng, C. H., Wickneswary, R., Salmijah, S., Teng, Y. T., and Ismail, B. S. 2004b. Glyphosate resistance in Eleusine indica (L.) Gaertn. from different origins and polymerase chain reaction amplification of specific alleles. Aust. J. Agric. Res. 55:407414.Google Scholar
Norsworthy, J. K., Burgos, N. R., and Oliver, L. R. 2001. Differences in weed tolerance to glyphosate involve different mechanisms. Weed Technol. 15:725731.CrossRefGoogle Scholar
Owen, M. D. K. and Zelaya, I. A. 2005. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61:301311.CrossRefGoogle ScholarPubMed
Padgette, S. R., Re, D. B., Gasser, C. S., Eichholtz, D. A., Frazier, R. B., Hironaka, C. M., Levine, E. B., Shah, D. M., Fraley, R. T., and Kishore, G. M. 1991. Site-directed mutagenesis of a conserved region of the 5-enolpyruvylshikimate-3-phosphate synthase active site. J. Biol. Chem. 266:22,36422,369.CrossRefGoogle ScholarPubMed
Perez-Jones, A., Park, K. W., Polge, N., Colquhoun, J., and Mallory-Smith, C. A. 2007. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum . Planta. 226:395404.Google Scholar
Powles, S. B. 2008. Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag. Sci. 64:360365.Google Scholar
Preston, C. and Wakelin, A. M. 2008. Resistance to glyphosate from altered herbicide translocation patterns. Pest Manag. Sci. 64:372376.Google Scholar
Sammons, R. D., Heering, D. C., Dinicola, N., Glick, H., and Elmore, G. A. 2007. Sustainability and stewardship of glyphosate and glyphosate-resistant crops. Weed Technol. 21:347354.Google Scholar
Sidhu, R. S., Hammond, B. G., Fuchs, R. L., Mutz, J. N., Holden, L. R., George, B., and Olson, T. 2000. Glyphosate-tolerant corn: the composition and feeding value of grain from glyphosate-tolerant corn is equivalent to that of conventional corn (Zea mays L.). J. Agric. Food Chem. 48:23052312.Google Scholar
Simarmata, M., Bughrara, S., and Penner, D. 2005. Inheritance of glyphosate resistance in rigid ryegrass (Lolium rigidum) from California. Weed Sci. 53:615619.CrossRefGoogle Scholar
Simarmata, M. and Penner, D. 2008. The basis for glyphosate resistance in rigid ryegrass (Lolium rigidum) from California. Weed Sci. 56:181188.CrossRefGoogle Scholar
Smart, C. C., Johänning, D., Müller, G., and Amrhein, N. 1985. Selective overproduction of 5-enol-pyruvylshikimic acid 3-phosphate synthase in a plant cell culture which tolerates high doses of the herbicide glyphosate. J. Biol. Chem. 260:16,33816,346.Google Scholar
Sost, D. and Amrhein, N. 1990. Substitution of Gly-96 to Ala in the 5-enolpyruvylshikimate-3-phosphate synthase of Klebsiella pneumoniae results in a greatly reduced affinity for the herbicide glyphosate. Arch. Biochem. Biophys. 282:433436.Google Scholar
Stalker, D. M., Hiatt, W. R., and Comai, L. 1985. A single amino acid substitution in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase confers resistance to the herbicide glyphosate. J. Biol. Chem. 260:47244728.Google Scholar
Steinrücken, H. C. and Amrhein, N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94:12071212.Google Scholar
Tranel, P. J., Lee, R. M., Bell, M. S., Singh, S., Walter, J. R., and Bradley, K. W. 2006. What we know (and don't know) about glyphosate resistance in waterhemp. Proc. North Cent. Weed Sci. Soc. Abstr. 61:100.Google Scholar
Wakelin, A. M., Lorraine-Colwill, D. F., and Preston, C. 2004. Glyphosate resistance in four different populations of Lolium rigidum is associated with reduced translocation of glyphosate to meristematic zones. Weed Res. 44:453459.CrossRefGoogle Scholar
Wakelin, A. M. and Preston, C. 2006. A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res. 46:432440.Google Scholar
Westwood, J. H. and Weller, S. C. 1997. Cellular mechanisms influence differential glyphosate sensitivity in field bindweed (Convolvulus arvensis) biotypes. Weed Sci. 45:211.Google Scholar
Yu, Q., Cairns, A., and Powles, S. B. 2007. Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta. 225:499513.Google Scholar
Yuan, C. I., Hsieh, Y. C., and Chiang, M. Y. 2005. Glyphosate-resistant goosegrass in Taiwan: cloning of target enzyme (EPSPS) and molecular assay of field populations. Plant Prot. Bull. 47:251261.Google Scholar
Zelaya, I. A. and Owen, M. D. K. 2005. Differential response of Amaranthus tuberculatus (Moq ex DC) JD Sauer to glyphosate. Pest Manag. Sci. 61:936950.Google Scholar
Zelaya, I. A., Owen, M. D. K., and VanGessel, M. J. 2004. Inheritance of evolved glyphosate resistance in Conyza canadensis (L.) Cronq. Theor. Appl. Genet. 110:5870.CrossRefGoogle ScholarPubMed
Zelaya, I. A., Owen, M. D. K., and VanGessel, M. J. 2007. Transfer of glyphosate resistance: evidence of hybridization in Conyza (Asteraceae). Am. J. Bot. 94:660673.Google Scholar
Zhou, M., Xu, H., Wei, X., Ye, Z., Wei, L., Gong, W., Wang, Y., and Zhu, Z. 2006. Identification of a glyphosate-resistant mutant of rice 5-enolpyruvylshikimate 3-phosphate synthase using a directed evolution strategy. Plant Physiol. 140:184195.Google Scholar