Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T07:04:03.738Z Has data issue: false hasContentIssue false

Growth Regulation and Other Secondary Effects of Herbicides

Published online by Cambridge University Press:  20 January 2017

Edivaldo D. Velini*
Affiliation:
UNESP—Universidade Estadual, College of Agronomic Sciences, Botucatu, Brazil
Maria L. B. Trindade
Affiliation:
UNESP—Universidade Estadual, College of Agronomic Sciences, Botucatu, Brazil
Luis Rodrigo M. Barberis
Affiliation:
UNESP—Universidade Estadual, College of Agronomic Sciences, Botucatu, Brazil
Stephen O. Duke
Affiliation:
USDA-ARS, Natural Products Utilization Research Unit, P.O. Box 8048, University, MS 38677
*
Corresponding author's E-mail: [email protected]

Abstract

As all herbicides act on pathways or processes crucial to plants, in an inhibitory or stimulatory way, low doses of any herbicide might be used to beneficially modulate plant growth, development, or composition. Glyphosate, the most used herbicide in the world, is widely applied at low rates to ripen sugarcane. Low rates of glyphosate also can stimulate plant growth (this effect is called hormesis). When applied at recommended rates for weed control, glyphosate can inhibit rust diseases in glyphosate-resistant wheat and soybean. Fluridone blocks carotenoid biosynthesis by inhibition of phytoene desaturase and is effective in reducing the production of abscisic acid in drought-stressed plants. Among the acetolactate synthase inhibitors, sulfometuron-methyl is widely used to ripen sugarcane and imidazolinones can be used to suppress turf species growth. The application of protoporphyrinogen oxidase inhibitors can trigger plant defenses against pathogens. Glufosinate, a glutamine synthetase inhibitor, is also known to improve the control of plant diseases. Auxin agonists (i.e., dicamba and 2,4-D) are effective, low-cost plant growth regulators. Currently, auxin agonists are still used in tissue cultures to induce somatic embryogenesis and to control fruit ripening, to reduce drop of fruits, to enlarge fruit size, or to extend the harvest period in citrus orchards. At low doses, triazine herbicides stimulate growth through beneficial effects on nitrogen metabolism and through auxin-like effects. Thus, sublethal doses of several herbicides have applications other than weed control.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Almeida, I. M. L., Rodrigues, J. D., and Ono, E. O. 2004. Application of plant growth regulators at pre-harvest for fruit development of ‘PêRA’ oranges. Braz. Archiv. Biol. Technol. 47:511520.Google Scholar
Almeida, I. M. L., Rodrigues, J. D., and Ono, E. O. 2008. Harvest season extent of tangerin Ponkan fruits with the application of GA3 and 2,4-D. Ciênc. Agrotec. Lavras. 32:834839.Google Scholar
Amrhein, N., Deus, B., Gehrke, P., Hollander, H., Schab, J., Schulz, A., and Steinrücken, H. C. 1981. Interference of glyphosate with the shikimate pathway. Proc. Plant Growth Regul. Soc. Am. 8:99106.Google Scholar
Amrhein, N., Deus, B., Gehrke, P., and Steinrücken, H. C. 1980. The site of inhibition of the shikimate pathway by glyphosate: II. interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66:830834.Google Scholar
Anderson, J. A. and Kolmer, J. A. 2005. Rust control in glyphosate-tolerant wheat following application of the herbicide glyphosate. Plant Dis. 89:11361142.Google Scholar
Anthony, M. F. and Coggins, C. W. Jr. 1999. The efficacy of five forms of 2,4-D in controlling preharvest fruit drop in citrus. Sci. Hort. 81:267277.Google Scholar
Becerril, J., Duke, S. O., and Lydon, J. 1989. Glyphosate effects on shikimate pathway products in leaves and flowers of velvetleaf. Phytochemistry. 28:695699.Google Scholar
Bennett, P. G. and Montes, G. 2003. Effect of glyphosate formulation on sugarcane ripening. Sugar J. 66:22.Google Scholar
Budoi, G. and Ries, S. K. 1968. Absorption of radioactive simazin: increased protein content due to atrazine application to rye plants. Stud. Cercet. Biochim. 11:371375.Google Scholar
Burke, I. C., Thomas, W. E., Wendy, A., Pline-Srnić, L., Fisher, L. R., Smith, W. D., and Wilcut, J. W. 2005. Yield and physiological response of flue-cured tobacco to simulated glyphosate drift. Weed Technol. 19:255260.Google Scholar
Castro, P. R. C. 1999. Maturadores químicos em cana-de-açúcar. Saccharum. 1:1216.Google Scholar
Castro, P. R. C. 2000. Utilização de reguladores vegetais no sistema de produção da cana-de-açúcar. Anais. Simpósio Internacional de Fisiologia da Cana-de-Açúcar. STAB, Piracicaba, 14 a 20 de Outubro de 2000. 10. CD-ROM.Google Scholar
Castro, P. R. C. and Meschede, D. K. 2009. Glyphosate: uso como maturador em cana-de-açúcar. in Velini, E. D., Meschede, D. K., Carbonari, C. A., and Trindade, M. L. B. orgs. Glyphosate. 1st ed. Botucatu: FEPAF. 1:429459.Google Scholar
Castro, P. R. C., Oliveira, D. A., and Panini, E. L. 1996. Ação do sulfometuron-metil como maturador da cana-de-açúcar. STAB. 6:363369.Google Scholar
Castro, P. R. C., Zambon, S., Sansígolo, M. A., Beltrame, J. A., and Nogueira, M. C. S. 2002. Ação comparada de Ethrel, Fuzilade e Roundup, em duas épocas de aplicação, na maturação e produtividade da cana-de-açúcar “SP 70-1143”. Rev. Agric. 77:2338.Google Scholar
Cedergreen, N., Streibig, J. C., Kudsk, P., Mathiassen, S. K., and Duke, S. O. 2007. The occurence of hormesis in plants and algae. Dose Resp. 5:150162.Google Scholar
Clowes, M. S. J. 1978. Early and late season chemical ripening of sugarcane. Proc. S. Afr. Sugar Technol. Assoc. 52:160165.Google Scholar
Clowes, M. S. J. 1980. Ripening activity of the glyphosate salts Mon 8000 and Roundup. Proc. S. Afr. Sugar Technol. Assoc. 54:676693.Google Scholar
Clowes, M. S. J. and Inman-Bamber, N. G. 1980. Effects of moisture regime, amount of nitrogen applied and variety on the ripening response of sugarcane to glyphosates. Proc. S. Afr. Sugar Technol. Assoc. 54:127133.Google Scholar
Copping, L. G., Davis, D. E., and Pillai, C. G. P. 1972. Growth regulator-like activity of atrazine and ametryne. Weed Sci. 20:274281.Google Scholar
Dann, E. K., Diers, B. W., and Hammerschmidt, R. 1999. Suppression of Sclerotina stem rot of soybean by lactofen herbicide treatment. Phytopathology. 89:598602.Google Scholar
Daugrois, J. H., Hoy, J. W., and Griffin, J. L. 2005. Protoporphyrinogen oxidase inhibitor herbicide effects on Pythium root rot of sugarcane, Pythium species, and the soil microbial community. Phytopathology. 95:220226.Google Scholar
Dayan, F. E. and Duke, S. O. 1997. Phytotoxicity of protoporphyrinogen oxidase inhibitors: Phenomenology, mode of action and mechanisms of resistance. Pages 1135. in Roe, R. M., Burton, J. D., and Kuhr, R. J. eds. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Washington, DC: IOS Press.Google Scholar
Dayan, F. E., Duke, S. O., and Grossmann, K. 2010. Herbicides as probes in plant biology. Weed Sci. 58:340350.Google Scholar
Dissanayake, N., Hoy, J. W., and Griffin, J. L. 1998. Herbicide effects on sugarcane growth, Pythium root rot, and Pythium arrhenomanes . Phytopathology. 88:530535.Google Scholar
Duke, S. O. 1988. Glyphosate. Pages 170. in Kearney, P. C. and Kaufman, D. D. eds. Herbicides, Chemistry, Degradation and Mode of Action. Volume 3. New York: Marcel Dekker.Google Scholar
Duke, S. O., Cedergreen, N., Velini, E. D., and Belz, R. G. 2007a. Hormesis: is it an important factor in herbicide use and allelopathy? Outlooks Pest. Manag. 17:2933.Google Scholar
Duke, S. O. and Powles, S. B. 2008. Glyphosate: a once in a century herbicide. Pest Manag. Sci. 64:319325.Google Scholar
Duke, S. O., Wedge, D. E., Cerdeira, A. L., and Matallo, M. B. 2007b. Interactions of synthetic herbicides with plant disease and microbial herbicides. Pages 277296. in Vurro, M. and Gressel, J. eds. Novel Biotechnologies for Biocontrol Agent Enhancement and Management. Dordrecht, the Netherlands: Springer.Google Scholar
Dusky, J. A., Kang, M. S., Glaz, B., and Miller, J. D. 1986. Response of eight sugarcane cultivars to glyphosine and glyphosate ripeners. Plant Growth Regul. 4:225235.Google Scholar
El-Ohtmani, M., Agustí, M., Aznar, M., and Almela, V. 1993. Improving the size of Fortune mandarin fruits by the auxin 2,4-DP. Sci. Hort. 55:283290.Google Scholar
El-Zeftawi, B. M. 1976. Effects of ethephon and 2,4,5-T on fruit size, rind pigments and alternate bearing of Imperial mandarin. Sci Hort. 5:315320.Google Scholar
Enserink, M. 2006. Oseltamivir becomes plentiful—but still not cheap. Science. 312:382383.Google Scholar
Estabrooks, T., Browne, R., and Dong, Z. 2007. 2,4,5-Trichlorophenoxyacetic acid promotes somatic embryogenesis in the rose cultivar ‘Livin’ Easy' (Rosa sp.). Plant Cell Rep. 26:153160.Google Scholar
Feng, P. C. C., Baley, G. J., Clinton, W. P., Bunkers, G. J., Alibhai, M. F., Paulitz, T. C., and Kidwell, K. K. 2005. Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean. Proc. Natl. Acad. Sci. U. S. A. 102:1729017295.Google Scholar
Feng, P. C. C., Clark, C., Andrade, G. C., Balbi, M. C., and Caldwell, P. 2008. The control of Asian rust by glyphosate in glyphosate-resistant soybeans. Pest Manag. Sci. 64:353359.Google Scholar
Fong, F., Smith, J. D., and Koehler, D. E. 1983. Early events in maize seed development: 1-methyl-3-phenyl-5-(3-[trifluoromethyl]phenyl)-4-(1H)-pyridinone induction of vivipary. Plant Physiol. 73:899901.Google Scholar
Gardner, F. E., Reece, P. C., and Horanic, G. E. 1950. The effect of 2,4-D on pre-harvest drop of citrus fruit under Florida conditions. Proc. Fla. State Hort. Soc. 63:711.Google Scholar
Gazziero, D. L. P., Maciel, C. D. G., Souza, R. T., Velini, E. D., Prete, C., and Oliveira Neto, W. 2006. Glyphosate deposition for weed control in transgenic soybean. Planta Dan. 24:173181.Google Scholar
Gover, A. E., Johnson, J. M., and Kuhns, L. J. 2004. Evaluation of imazapic as a growth regulator in roadside tall fescue. Proc. Northeast. Weed Sci. Soc. 58:3435.Google Scholar
Guardiola, J. L. and Garcia-Luis, A. 2000. Increasing fruit size in citrus. Thinning and stimulation of fruit growth. Plant Growth Regul. 31:121132.Google Scholar
Harring, T., Streibig, J. C., and Husted, S. 1998. Accumulation of shikimic acid: a technique for screening glyphosate efficacy. J. Agric. Food Chem. 46:44064412.Google Scholar
Hixson, A. C., Gannon, T. W., and Yelverton, F. H. 2007. Efficacy of application placement equipment for tall fescue (Lolium arundinaceum) growth and seedhead suppression. Weed Technol. 21:801806.Google Scholar
Johansson, L., Lindskog, A., Silfversparre, G., Cimander, C., Nielsen, K. F., and Lidén, G. 2005. Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphate-limited and carbon-limited conditions. Biotechnol. Bioeng. 92:541552.Google Scholar
Keen, N. T., Holliday, M. J., and Yoshikawa, M. 1982. Effects of glyphosate on glyceollin production and the expression of resistance to Phytophthora megasperma f. sp. glycinea in soybean. Phytopathology. 72:14671470.Google Scholar
Kishore, G. M. and Shah, D. M. 1998. Amino acid biosynthesis inhibitors as herbicides. Annu. Rev. Biochem. 57:627663.Google Scholar
Kömives, T. and Casida, J. E. 1983. Acifluorfen increases the leaf content of phytoalexins and stress metabolites in several crops. J. Agric. Food Chem. 31:751755.Google Scholar
Liotenberg, S., North, H., and Marion-Poll, A. 1999. Molecular biology and regulation of abscisic acid in plants. Plant Physiol. 37:341350.Google Scholar
Liu, C. A., Zhong, H., Vargas, J., Penner, D., and Sticklen, M. B. 1998. Prevention of fungal diseases in transgenic, bialaphos- and glufosinate-resistant creeping bentgrass (Agrostis palustris). Weed Sci. 46:139146.Google Scholar
Lydon, J. and Duke, S. O. 1999. Inhibitors of glutamine biosynthesis. Pages 445464. in Singh, B. K. ed. Plant Amino Acids: Biochemistry and Biotechnology. New York: Marcel Dekker.Google Scholar
Madhumita, J., Sujatha, K., and Sulekha, H. 2008. Effect of TDZ and 2,4-D on peanut somatic embryogenesis and in vitro bud development. Plant Cell Tissue Organ Cult. 94:8590.Google Scholar
Mahalakshmi, A., Khurana, J. P., and Khurana, P. 2003. Rapid induction of somatic embryogenesis by 2,4-D in leaf base cultures of wheat (Triticum aestivum L.). Plant Biotechnol. 20:267273.Google Scholar
Maxwell, P. A., Hijun Yi, J. Z., Murch, S. J., and Saxena, P. K. 2007. Thidiazuron-induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems. Plant Cell Rep. 26:1319.Google Scholar
McDonald, L. M., Morgan, T., and Kingston, G. 2000. Chemical ripeners: an opportunity for the Australian sugar industry. Proc. Aust. Soc. Sugarcane Technol. 22:290295.Google Scholar
Meschede, D. K., Sanomya, R., Carbonari, C. A., and Velini, E. D. 2009. Respostas fisiológicas da cana-de-açúcar ao uso de glyphosate como maturador. Page 496 in Velini, E. D., Meschede, D. K., Carbonari, C. A., and Trindade, M. L. B. orgs. Glyphosate. 1st ed. Botucatu: FEPAF.Google Scholar
Nelson, K. A., Renner, K. A., and Hammerschmidt, R. 2002a. Cultivar and herbicide selection affects soybean development and the incidence of Sclerotinia stem rot. Agron. J. 94:12701281.Google Scholar
Nelson, K. A., Renner, K. A., and Hammerschmidt, R. 2002b. Effects of protoporhyrinogen oxidase inhibitors on soybean (Glycine max L.) response, Sclerotinia sclerotiorum disease development, and phytoalexin production by soybean. Weed Technol. 16:353359.Google Scholar
Popova, L. P. 1998. Fluridone and light-affected chloroplast ultrastructure and ABA accumulation in drought-stressed barley. Plant Physiol. 36:313319.Google Scholar
Pulver, E. L. and Ries, S. K. 1973. Action of simazine in increasing plant protein content. Weed Sci. 233237.Google Scholar
Ries, S. K., Chimiel, H., Dilley, D. R., and Filner, P. 1967. The increase in nitrate reductase activity and protein content of plants treated with simazine. Proc. Natl. Acad. Sci. U. S. A. 58:526532.Google Scholar
Ries, S. K., Larsen, R. P., and Kenworthy, A. L. 1963. Apparent influence of simazine on nitrogen nutrition of peach and apple trees. Weeds. 11:270273.Google Scholar
Ries, S. K., Moreno, O., Meggitt, W. F., Schweizer, C. J., and Ashkar, S. A. 1970. Wheat seed protein: chemical influence on and relation to subsequent growth and yield in Michigan and Mexico. Agron. J. 62:746748.Google Scholar
Ries, S. K. and Wert, V. 1972. Simazine-induced nitrate absorption related to plant protein content. Weed Sci. 20:569572.Google Scholar
Ross, C. W. 1992. Hormones and growth regulators: Cytokinins, ethylene, abiscisic acid, and other compounds. Pages 382406. in Salisbury, F. B. and Ross, C. W. eds. Plant Physiology. 4th ed. Belmont, CA: Wadsworth.Google Scholar
Rufini, J. C. M., Ramos, J. D., Mendonça, V., Araújo Neto, S. E., Pio, L. A. S., and Ferreira, E. A. 2008. Harvest season extent of tangerin Ponkan fruits with the application of GA3 AND 2,4-D. Ciênc. Agrotec. Lavras. 32:834839.Google Scholar
Saab, I. N., Sharp, R. E., Pritchard, J., and Voetberg, G. S. 1990. Increase endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedling at low water potentials. Plant Physiol. 93:13291336.Google Scholar
Sanyal, D. and Shrestha, A. 2008. Direct effect of herbicides on plant pathogens and disease development in various cropping systems. Weed Sci. 56:155160.Google Scholar
Schabenberger, O., Kells, J. J., and Penner, D. 1999. Statistical tests for hormesis and effective dosage in herbicide dose–response. Agron. J. 91:713721.Google Scholar
Sharon, A., Amsellem, Z., and Gressel, J. 1992. Glyphosate suppression of an elicited response. Increased susceptibility of Cassia obtusifolia to a mycoherbicide. Plant Physiol. 98:654659.Google Scholar
Sharp, R. E. and LeNoble, M. E. 2002. ABA, ethylene and the control of shoot and root growth under water stress. J. Exp. Bot. 53:3337.Google Scholar
Sharp, R. E., Wu, Y., Voetberg, G. S., Saab, I. N., and LeNoble, M. E. 1994. Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. J. Exp. Bot. 45:17431751.Google Scholar
Singh, B. K. and Shaner, D. L. 1998. Rapid determination of glyphosate injury to plants and identifications of glyphosate-resistant plants. Weed Technol. 12:527530.Google Scholar
Soares, R. M., Gazziero, D. L. P., Morita, D. A. S., Ciliato, M. L., Flausino, A. M., Santos, L. C. M., and Janegitz, T. 2008. Utilização de glifosato para o controle de ferrugem da soja. Pesq. Agropec. Bras. 43:473477.Google Scholar
Souza, R. T., Velini, E. D., and Palladini, L. A. 2007. Methodological aspects for spray analysis by punctual deposit determination. Planta Dan. 25:17.Google Scholar
Spollen, W. G., LeNoble, M. E., Damuels, T. D., Berstein, N., and Sharp, R. E. 2000. Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol. 122:967976.Google Scholar
Strbac, V. D., Ayers, G. S., and Ries, S. K. 1974. Protein fractions in chemically induced high-protein wheat seed. Cereal Chem. 51:316323.Google Scholar
Su, L. Y., Cruz, A. D., Moore, P. H., and Maretzki, A. 1992. The relationship of glyphosate treatment to sugar metabolism in sugarcane: new physiological insights. J. Plant Physiol. 140:168173.Google Scholar
Subiros, J. F. 1990. Efecto de la aplicación de glyphosate como madurador em três cultivares de caña de azúcar. Turrialba. 40:527534.Google Scholar
Tweedy, J. A. and Ries, S. K. 1967. Effect of simazine on nitrate reductase activity in corn. Plant Physiol. 42:280282.Google Scholar
Uchimiya, H., Iwata, M., Nojiri, C., et al. 1993. Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Nature Biotechnology. 11:835836.Google Scholar
Velini, E. D., Alves, E., Godoy, M. C., Meschede, D. K., Souza, R. T., and Duke, S. O. 2008. Glyphosate applied at low doses can stimulate plant growth. Pest Manag. Sci. 64:489496.Google Scholar
Velini, E. D., Duke, S. O., Trindade, M. L. B., Meschede, D. K., and Carbonari, C. A. 2009. Modo de ação de glyphosate. Pages 113134. in Velini, E. D., Meschede, D. K., Carbonari, C. A., and Trindade, M. L. B. orgs. Glyphosate. 1st ed. Botucatu: FEPAF.Google Scholar
Wagner, R., Kogan, M., and Parada, A. M. 2003. Phytotoxic activity of root-absorbed glyphosate in corn seedlings (Zea mays L.). Weed Biol. Manag. 3:228232.Google Scholar
Wang, Y., Browning, M., Ruemmele, B. A., Chandlee, J. M., Kausch, A. P., and Jackson, N. 2003. Glufosinate reduces fungal diseases in transgenic glufosinate-resistant bentgrasses (Agrostis spp.). Weed Sci. 51:130137.Google Scholar
Wild, A. and Ziegler, C. 1989. The effect of bialaphos on ammonium assimilation and photosynthesis: I. effect on the enzymes of ammonium assimilation. Z. Naturforsch. 44c:97102.Google Scholar
Yelverton, F. H., McCarty, L. B., and Murphy, T. R. 1997. Effects of imazameth on the growth of Paspalum notatum Fluegge Int. Turfgrass Soc. 8:10851094.Google Scholar