Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T15:45:17.682Z Has data issue: false hasContentIssue false

Growth Characterization of Kochia (Kochia scoparia) with Substitutions at Pro197 or Trp574 Conferring Resistance to Acetolactate Synthase–Inhibiting Herbicides

Published online by Cambridge University Press:  20 January 2017

Anne Légère*
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada
F. Craig Stevenson
Affiliation:
142 Rogers Road, Saskatoon, Saskatchewan, S7N 3T6, Canada
Hugh J. Beckie
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada
Suzanne I. Warwick
Affiliation:
AAFC, Eastern Cereal and Oilseed Research Centre, K. W. Neatby Building, Central Experimental Farm, Ottawa, Ontario K1A 0C6, Canada
Eric N. Johnson
Affiliation:
AAFC, Scott Research Farm, P.O. Box 10, Scott, Saskatchewan, S0K 4A0, Canada
Brett Hrynewich
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada
Chris Lozinski
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada
*
Corresponding author's E-mail: [email protected]

Abstract

Over 90% of Canadian kochia populations are resistant to acetolactate synthase (ALS)– inhibiting herbicides. We questioned whether the target site–based resistance could affect plant growth and competitiveness. Homozygous F2 herbicide-resistant (HR) kochia plants with an amino acid substitution at Trp574 (sources: Alberta [AB], Saskatchewan [SK], and Manitoba [MB]), or Pro197 (MB, AB with two populations) were grown in replacement series with homozygous F2 herbicide-susceptible (HS) plants from the corresponding heterogeneous population (total: six populations). In pure stands, growth of HR plants from AB and SK was similar to that of HS plants, regardless of mutation; conversely, MB2-HR plants (Trp574Leu) developed more slowly and were taller than MB2-HS plants. Final dry weight of HR plants in pure stands was similar across all six populations, whereas that for HS plants in pure stands and HR–HS plants in mixed stands (50–50%) varied with population. Results for AB and SK populations suggest little impact of either ALS mutation on kochia growth, whereas those for MB lines would suggest an unidentified factor (or factors) affecting the HS, HR, or both biotypes. The variable response within and between lines, and across HS biotypes highlights the importance of including populations of various origins and multiple susceptible controls in HR biotype studies.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ashigh, J. and Tardif, F. J. 2009. An amino acid substitution at position 205 of acetohydroxyacid synthase reduces fitness under optimal light in resistant populations of Solanum ptychanthum . Weed Res. 49: 479489.Google Scholar
Ashigh, J. and Tardif, F. J. 2011. Water and temperature stress impact fitness of acetohydroxyacid synthase-inhibiting herbicide-resistant populations of eastern black nightshade (Solanum ptychanthum). Weed Sci. 59: 341348.Google Scholar
Beckie, H. J., Blackshaw, R. E., Low, R., Hall, L. M., Sauder, C. A., Martin, S., Brandt, R. N., and Shirriff, S. W. 2013. Glyphosate- and acetolactate synthase inhibitor-resistant kochia (Kochia scoparia) in western Canada. Weed Sci. DOI: 10.1614/WS-D-12-00116.1.Google Scholar
Beckie, H. J., Johnson, E. N., and Légère, A. 2012. Negative cross-resistance of acetolactate synthase inhibitor-resistant kochia (Kochia scoparia) to protoporphyrinogen oxidase and hydroxyphenylpyruvate dioxygenase–inhibiting herbicides. Weed Technol. 26: 570574.Google Scholar
Beckie, H. J. and Tardif, F. J. 2012. Herbicide cross resistance in weeds. Crop Prot. 35: 1528.Google Scholar
Beckie, H. J., Warwick, S. I., Sauder, C. A., Lozinski, C., and Shirriff, S. 2011. Occurrence and molecular characterization of acetolactate synthase (ALS) inhibitor-resistant kochia (Kochia scoparia) in western Canada. Weed Technol. 25: 170175.Google Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. Biol. Chem. 270: 1738117385.Google Scholar
Chang, A. K. and Duggleby, R. G. 1998. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem. J. 333: 765777.Google Scholar
Christoffoleti, P. J., Westra, P., and Moore, F. III. 1997. Growth analysis of sulfonyl-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 45: 691695.Google Scholar
Cousens, R. D., Gill, G. S., and Speijers, E. J. 1997. Comment: number of sample populations required to determine the effects of herbicide resistance on plant growth and fitness. Weed Res. 37: 14.Google Scholar
Duggleby, R. G., Pang, S. S., Yu, H., and Guddat, L. W. 2003. Systematic characterization of mutations in yeast acetohydroxyacid synthase. Eur. Biochem. 270: 28952904.Google Scholar
Dyer, W. E., Chee, P. W., and Fay, P. K. 1993. Rapid germination of sulfonyl-resistant Kochia scoparia L. accessions is associated with elevated seed level of branched chain amino acid. Weed Sci. 41: 1822.Google Scholar
Eberlein, C. V., Guttieri, M. J., Berger, P. H., Fellman, J. K., Mallory-Smith, C. A., Thill, D. C., Baerg, R. J., and Belknap, W. R. 1999. Physiological consequences of mutation for ALS-inhibitor resistance. Weed Sci. 47: 383392.Google Scholar
Friesen, L. F., Beckie, H. J., Warwick, S. I., and Van Acker, R. C. 2009. The biology of Canadian weeds. 138. Kochia scoparia (L.) Schrad. Can. J. Plant Sci. 89: 141167.Google Scholar
Friesen, L. F., Morrison, I. N., Rashid, A., and Devine, M. D. 1993. Response of a chlorsulfuron-resistant biotype of Kochia scoparia to sulfonyl urea and alternative herbicides. Weed Sci. 41: 100106.Google Scholar
Friesen, M. L. and von Wettberg, E. J. 2010. Adapting genomics to study evolution and ecology of agricultural systems. Curr. Opin. Plant Biol. 13: 119125.Google Scholar
Goulart, I.C.G.R., Matzenbacher, F. O., and Merotto, A. Jr. 2012. Differential germination pattern of rice cultivars resistant to imidazolinone herbicides carrying different acetolactate synthase gene mutations. Weed Res. 52: 224232.Google Scholar
Guttieri, M. J., Eberlein, C. V., and Souza, E. J. 1998. Inbreeding coefficients of field populations of Kochia scoparia using chlorsulfuron resistance as a phenotypic marker. Weed Sci. 46: 521525.Google Scholar
Hanzawa, Y., Money, T., and Bradley, D. 2005. A single amino acid converts a repressor to an activator of flowering. Proc. Natl. Acad. Sci. U. S. A. 102: 77487753.Google Scholar
Harper, J. L. 1977. Population Biology of Plants. London, UK: Academic. 892 p.Google Scholar
Heap, I. M. 2012. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: August 2012.Google Scholar
Hereford, J. 2009. A quantitative survey of local adaptation and fitness trade-offs. Am. Nat. 173: 579588.Google Scholar
Hess, M., Barralis, G., Bleiholder, H., Buhr, L., Eggers, Th., Hack, H., and Stauss, R. 1997. Use of extended BBCH scale—general for the descriptions of the growth stage of mono- and dicotyledonous weed species. Weed Res. 37: 433441.Google Scholar
Lamego, F. P., Vidal, R. A., and Burgos, N. R. 2011. Competitiveness of ALS inhibitor resistant and susceptible biotypes of greater beggarticks (Bidens subalternans). Planta Daninha 29: 457464.Google Scholar
Leeson, J. Y., Thomas, A. G., Hall, L. M., Brenzil, C. A., Andrews, T., Brown, K. R., and Van Acker, R. C. 2005. Prairie Weed Surveys of Cereal, Oilseed and Pulse Crops from the 1970s to the 2000s. Saskatoon, Saskatchewan, Canada: Agriculture and Agri-Food Canada Weed Survey Series Publ. 05-1. 395 p.Google Scholar
Li, M., Yu, Q., Han, H., Vila-Aiub, M., and Powles, S. B. 2012. ALS herbicide resistance in Raphanus raphanistrum: evaluation of pleiotropic effects on vegetative growth and ALS activity. Pest Manag. Sci. DOI: 10.1002/ps.3419.Google Scholar
Mengistu, L. W. and Messermith, C. G. 2002. Genetic diversity of kochia. Weed Sci. 50: 498503.Google Scholar
Poston, D. H., Wilson, H. P., and Hines, T. E. 2002. Growth and development of imidazolinone-resistant and -susceptible smooth pigweed biotypes. Weed Sci. 50: 485493.Google Scholar
Preston, C., Stone, L. M., Rieger, M. A., and Baker, J. 2006. Multiple effects of a naturally occurring proline to threonine substitution within acetolactate synthase in two herbicide-resistant populations of Lactuca serriola . Pestic. Biochem. Physiol. 84: 227235.Google Scholar
Renton, M. 2013. Shifting focus from the population to the individual as a way forward in understanding, predicting and managing the complexities of resistance to pesticides. Pest Manag. Sci. 69: 171175.Google Scholar
Roux, F., Gasquez, J., and Reboud, X. 2004. The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines. Genetics 166: 449460.Google Scholar
Saari, L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonyl urea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93: 5561.Google Scholar
SAS Institute, Inc. 2004. SAS/STAT 9.1 User's Guide. Cary, NC: SAS Institutetra. 5121 p.Google Scholar
Sibony, M. and Rubin, B. 2003. The ecological fitness of ALS-resistant Amaranthus retroflexus and multiple-resistant Amaranthus blitoides . Weed Res. 43: 4047.Google Scholar
Stallings, G. P., Thill, D. C., Mallory-Smith, C. A., and Shafii, B. 1995. Pollen-mediated gene flow of sulfonylurea-resistant kochia (Kochia scoparia). Weed Sci. 43: 95102.Google Scholar
Tardif, F. J., Rejcan, I., and Costea, M. 2006. A mutation in the herbicide target site acetohydroxyacid synthase produces morphological and structural alterations and reduces fitness in Amaranthus powellii . New Phytol. 169: 251264.Google Scholar
Thompson, C. R., Thill, D. C., and Shafii, B. 1994a. Germination characteristics of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 42: 5056.Google Scholar
Thompson, C. R., Thill, D. C., and Shafii, B. 1994b. Growth and competitiveness of sulfonylurea-resistant and -susceptible kochia (Kochia scoparia). Weed Sci. 42: 172179.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50: 700712.Google Scholar
Vila-Aiub, M. M., Neve, P., and Powles, S. B. 2009. Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol. 184: 751767.Google Scholar
Vila-Aiub, M. M., Neve, P., and Roux, F. 2011. A unified approach to the estimation and interpretation of resistance costs in plants. Heredity 107: 386394.Google Scholar
Warwick, S. I., Xu, R., Sauder, C., and Beckie, H. J. 2008. Acetolactate synthase target-site mutations and single nucleotide polymorphism genotyping in ALS-resistant kochia (Kochia scoparia). Weed Sci. 56: 797806.Google Scholar
Wiersma, A., Westra, P., Leach, J. E., and Preston, C. 2011. Response Patterns of Suspected Glyphosate Resistant Kochia Accessions. WSSA Abstracts, No. 363. https://wssaabstracts.com/user/home.php. Accessed: October 2012.Google Scholar
Yin, X., Goudriaan, J., Lanting, E. A., Vos, J., and Spiertz, H. J. 2003. A flexible sigmoid function of determinate growth. Ann. Bot. 91: 361371.Google Scholar
Yu, Q., Han, H., Li, M., Walsh, M. J., and Powles, S. B. 2012. Resistance evaluation for herbicide-resistance-endowing acetolactate synthase (ALS) gene mutations using Raphanus raphanistrum populations homozygous for specific ALS mutations. Weed Res. 52: 178186.Google Scholar
Yu, Q., Han, H., Vila-Aiub, M. M., and Powles, S. B. 2010. AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. Exp. Bot. 61: 39253934.Google Scholar