Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T16:35:10.035Z Has data issue: false hasContentIssue false

Growth and Competitiveness of Sulfonyhirea-Resistant and -Susceptible Kochia (Kochia scoparia)

Published online by Cambridge University Press:  12 June 2017

Curtis R. Thompson
Affiliation:
Univ. Idaho, Moscow, ID 83844-2339
Donald C. Thill
Affiliation:
Univ. Idaho, Moscow, ID 83844-2339
Bahman Shafii
Affiliation:
Univ. Idaho, Moscow, ID 83844-2339

Abstract

Growth, competitiveness, and fecundity differences between resistant (R) and susceptible (S) biotypes affect management strategies. This greenhouse research examines growth, competitiveness, and fecundity of chlorsulfuron-resistant (R) and -susceptible (S) kochia collected from North Dakota and Kansas. In noncompetitive studies, sulfonylurea R and S kochia biotypes from Kansas and North Dakota had similar growth rates and seed production. All biotypes produced about 12000 seeds per plant. Competitiveness of R and S biotypes from Kansas was similar. Interbiotype competition reduced R and S plant biomass more than intrabiotype competition. The relative competitiveness of the R and S biotypes was 0.75 and 0.85, respectively. The resistance trait did not reduce growth, seed production, and competitiveness of R compared to S kochia in greenhouse studies.

Type
Weed Biology and Ecology
Copyright
Copyright © 1994 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Alcocer-Ruthling, M., Thill, D. C., and Mallory-Smith, C. 1992. Monitoring the occurrence of sulfonylurea-resistant prickly lettuce (Lactuca serriola). Weed Technol. 6:437440.Google Scholar
2. Alcocer-Ruthling, M., Thill, D. C., and Shafii, B. 1992. Differential competitiveness of sulfonylurea resistant and susceptible prickly lettuce (Lactuca serriola). Weed Technol. 6:303309.Google Scholar
3. Alcocer-Ruthling, M., Thill, D. C., and Shafii, B. 1992. Seed biology of sulfonylurea-resistant and -susceptible biotypes of prickly lettuce (Lactuca serriola). Weed Technol. 6:858864.Google Scholar
4. Beyer, E. M., Duffy, M. J., Hay, J. V., and Schlueter, D. D. 1988. Sulfonylureas. Pages 117189 in Kearney, P. C. and Kaufman, D. D., eds. Herbicide Chemistry, Degradation, and Mode of Action. Vol 3. Marcel Dekker, New York.Google Scholar
5. Bell, A. R., Nalewaja, J. D., and Schooler, A. B. 1972. Light period, temperature, and kochia flowering. Weed Sci. 20:462464.Google Scholar
6. Belsley, D. A., Kuh, E., and Welsch, R. E. 1980. Regression diagnostics: identifying influential data and sources of colinearity. John Wiley and Sons, New York.CrossRefGoogle Scholar
7. Chaleff, R. S. and Mauvais, C. J. 1984. Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224:14431445.CrossRefGoogle ScholarPubMed
8. Conard, S. G. and Radosevich, S. R. 1979. Ecological fitness of Senecio vulgaris and Amaranthus retroflexus biotypes susceptible and resistant to atrazine. J. Appl. Ecol. 16:171177.Google Scholar
9. Christoffoleti, P. J. and Westra, P. 1991. Fitness and ecological adaptability of chlorsulfuron resistant and susceptible kochia biotypes. West. Soc. Weed Sci. Proc. 44:81.Google Scholar
10. Christoffoleti, P. J. and Westra, P. 1992. Competition and coexistence of sulfonylurea resistant and susceptible kochia (Kochia scoparia) biotypes in unstable environments. Abstr. Weed Sci. Soc. Am. 51.Google Scholar
11. Draper, N. R. and Smith, H. 1981. Pages 241256 in Applied Regression Analysis. 2nd ed. John Wiley and Sons, New York.Google Scholar
12. Eberlein, C. V. and Fore, Z. Q. 1984. Kochia biology. Weeds Today 15:57.Google Scholar
13. Gerwick, B. C., Subramanian, M. V., Loney-Gallant, V. I., and Chandler, D. P. 1990. Mechanism of action of the 1,2,4-triazolo [1,5-α]pyrimidines. Pestic. Sci. 29(3):357364.Google Scholar
14. Gressel, J. and Segel, L. A. 1978. The paucity of plants evolving genetic resistance to herbicides: possible reasons and implications. J. Theor. Biol. 75:349371.Google Scholar
15. Gressel, J. and Segel, L. A. 1990. Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol 4:186198.Google Scholar
16. Gressel, J. 1991. Why get resistance? It can be prevented or delayed. Pages 121 in Caseley, J. L., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Butterworth-Heinemann, Ltd., Linacre House, Jordan Hill, Oxford OX2 8DP.Google Scholar
17. Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., Thill, D. C., and Hoffman, D. L. 1992. DNA sequence variation in Domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci. 40:670676.Google Scholar
18. Guttieri, M. J. and Eberlein, C. V. 1993. Diverse mutations in the acetolactate synthase genes of kochia [Kochia scoparia (L.) Schrad.] biotypes confer resistance to chlorsulfuron. Abstr. Weed Sci. Soc. Am. 33:193.Google Scholar
19. Hawkes, T. R. 1989. Studies of herbicides which inhibit branched chained amino acid biosynthesis. Pages 131138 in Copping, L. G., Dalziel, J., and Dodge, A. D., eds. Prospects for Amino Acid Biosynthesis Inhibitors in Crop Protection and Pharmaceutical Chemistry. Br. Crop Prot. Counc., Surrey, UK.Google Scholar
20. Hitchcock, C. L., Cronquist, A., Diobey, M., and Thompson, J. W. 1964. Vascular plants of the Pacific Northwest. Part 2:206207. Univ. of Washington Press.Google Scholar
21. Jacobs, B. F., Duesing, J. H., Antonovics, J., and Patterson, D. T. 1988. Growth performance of triazine-resistant and -susceptible biotypes of Solanum nigrum over a range of temperatures. Can. J. Bot. 66:847850.Google Scholar
22. Jensen, J. E. 1993. Fitness of herbicide-resistant weed biotypes described by competition models in Proc. Euro. Weed Res. Soc. Quantitative approaches in weed and herbicide research and their practical application. Symposium, Braunschweig 1993. (In press.) Google Scholar
23. King, G., Schumacher, W. J., McKinley, N. D., Saladini, J., and Saari, L. L. 1990. Sulfonylurea-resistant weeds: An update of distribution and control. Proc. West. Soc. Weed Sci. 43:79.Google Scholar
24. LeBaron, H. M. and McFarland, J. 1990. Herbicide resistance in weeds and crops, an overview and prognosis. Pages 336352 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals from Fundamental Research to Practical Strategies. Am. Chem. Soc., Washington, DC.CrossRefGoogle Scholar
25. Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.Google Scholar
26. Maxwell, B. D., Roush, M. L., and Radosevich, S. R. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol. 4:213.Google Scholar
27. Mortimer, A. M., Ulf-Hansen, P. F., and Putwain, P. D. 1992. Modelling herbicide resistance—A study of ecological fitness. Pages 283306 in Denholm, I., Devonshire, A. L., and Hollomons, D. W., eds. Resistance '91: Achievements and Developments in Combatting Pesticide Resistance. Elsevier Science Publishers, Ltd., Essex, UK.Google Scholar
28. Mulugeta, D., Fay, P. K., Dyer, W. E., and Talbert, L. E. 1991. Inheritance to the sulfonylurea herbicides in Kochia scoparia . Proc. West. Soc. Weed Sci. 44:81.Google Scholar
29. Mulugeta, D. M. 1991. Management, inheritance, and gene flow of resistance to chlorsulfuron in Kochia scoparia (L.) Schrad. M.S. Thesis, Montana State Univ., Bozeman, MT.Google Scholar
30. Primiani, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4:169172.Google Scholar
31. Ray, T. B. 1984. Site of action of chlorsulfuron. Plant Physiol. 75:827831.Google Scholar
32. Ryder, E. J. 1986. Lettuce breeding. Pages 436472 in Basset, M. J., ed. Breeding Vegetable Crops. AVI Publishing Co., Westport, CT.Google Scholar
33. Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93:5561.CrossRefGoogle ScholarPubMed
34. Saari, L. L., Cotterman, J. C., and Thill, D. C. 1993. Mechanism of resistance for ALS-inhibitor herbicides in Powles, S. B. and Holtum, J. A. M., eds. Resistance to Herbicides in Plants. CRC Press. (In press.) Google Scholar
35. Institute, SAS. 1989. SAS/STAT™ Guide for personal computers. Version 6 ed. SAS Inst., Inc., Cary, NC. 378 pp.Google Scholar
36. Shafii, B., Moore, J. A., and Newberry, J. D. 1990. Individual-tree diameter growth models for quantifying within-stand response to nitrogen fertilization. Can. J. For. Res. 20:11491155.Google Scholar
37. Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones. Potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.Google Scholar
38. Silvertown, J. W. 1982. Introduction to Plant Population Ecology. 209 pp. Longman, London, England.Google Scholar
39. Spitters, C. J. T. 1983. An alternative approach to analysis of mixed cropping experiments. I. Estimation of competition effects. Neth. J. Agric. Sci. 31:111.Google Scholar
40. Stevens, O. A. 1932. The number and weight of seeds produced by weeds. Am. J. Bot. 19:784794.Google Scholar
41. Subramanian, M. V., Hung, H., Dias, J. M., Miner, V. W., Butler, J. H., and Jachetta, J. J. 1990. Properties of mutant acetolactate synthase resistant to triazolopyrimidine sulfonamide. Plant Physiol. 94:239244.Google Scholar
42. Takahashi, S., Shigematsu, S., and Morita, A. 1991. KIH-2031, a new herbicide for cotton. Pages 5762 in Brighton Crop Prot. Conf.—Weeds. Br. Crop Prot. Counc., Surrey, UK.Google Scholar
43. Thill, D. C., Mallory-Smith, C. A., Saari, L. L., Cotterman, J. C., Primiani, M. M., and Saladini, J. L. 1991. Sulfonylurea herbicide resistant weeds: Discovery, distribution, biology, mechanism, and management. Pages 115128 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Butterworth-Heinemann, Ltd., Oxford OX2 8DP.Google Scholar
44. Thompson, C. R. 1993. Biology of sulfonylurea herbicide-resistant and -susceptible kochia (Kochia scoparia). Ph.D. Diss., Univ. Idaho, Moscow, ID.Google Scholar
45. Thompson, C. R. and Thill, D. C. 1991. Evaluation of Ada County Idaho kochia (Kochia scoparia) collections for sulfonylurea resistance. West. Soc. Weed Sci. 1991 Res. Prog. Rep. Pages 300301.Google Scholar
46. Thompson, C. R. and Thill, D. C. 1992. Sulfonylurea herbicide-resistant and -susceptible kochia (Kochia scoparia (L.) Schrad) growth rates and seed production. Abstr. Weed Sci. Soc. Am. 32:131.Google Scholar
47. US Naval Observatory. 1977. Sunrise and sunset tables for key cities and weather stations of the U.S. Nautical Almanac Office. Gale Research Co. Table No. 1112.Google Scholar
48. Warwick, S. I. and Black, L. 1981. The relative competitiveness of atrazine susceptible and resistant populations of Chenopodium album and C. strictum . Can. J. Bot. 59:689693.Google Scholar