Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T16:52:59.720Z Has data issue: false hasContentIssue false

Genetic Diversity of Iranian Clones of Common Reed (Phragmites australis) Based on Morphological Traits and RAPD Markers

Published online by Cambridge University Press:  20 January 2017

Marjan Diyanat*
Affiliation:
Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
Ali A. S. Booshehri
Affiliation:
Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
Hassan M. Alizadeh
Affiliation:
Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
Mohammad R. Naghavi
Affiliation:
Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
Hamid R. Mashhadi
Affiliation:
Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
*
Corresponding author's E-mail: [email protected]

Abstract

The genetic diversity of 39 clones of common reed originating from different geographical areas of Iran were evaluated using morphological and RAPD analyses. High level of morphological variation was observed among clones. The 16 primers used in this study amplified 149 scorable RAPD loci among which 123 were polymorphic (83.1%). A dendrogram was prepared on the basis of a similarity matrix of RAPD data using the unweighted pair-group method with arithmetic averages (UPGMA) algorithm and separated the 39 clones into four groups, which mainly were in accordance with geographical origins. The results of the morphological comparison mostly corresponded with the results of RAPD analysis. It is possible that these variations among clones will affect successful management of common reed using chemical or the other methods of control.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Islamic Azad University, Science and Research Branch, Tehran, Iran.

References

Literature Cited

Bastlová, D., Bastl, M., Ćížková, H., and Kve˘ět, J. 2006. Plasticity of Lythrum salicaria and Phragmites australis growth chrarateristic across a European geographical gradient. Hydrobiologia. 570:237242.Google Scholar
Björk, S. 1967. Ecological investigation in Phragmites communis: studies in theoretic and applied limnology. Folia Limnol. Scand. 14:1248.Google Scholar
Bussell, G. D., Waycott, M., and Chappill, J. A. 2005. Arbitrarily amplified DNA markers as characters for phytogenetic interference. Perspect. Plant Ecol. Evol. Syst. 7:326.Google Scholar
Clevering, O. A. 1999. Between- and within-population differences in Phragmites australis. I. The effects of nutrient on seedling growth. Oecologia. 121:447457.Google Scholar
Clevering, O. A., Brix, H., and Lukaska, J. 2001. Geographic variation in growth response in Phragmites australis . Aquat. Bot. 69:89108.Google Scholar
Clevering, O. A. and Lissner, J. 1999. Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis . Aquat. Bot. 64:185208.Google Scholar
Cosentino, S. L., Copani, V., Agosta, G. M., Sanzone, E., and Mantineo, M. 2006. First results on evaluation of Arundo donax L. clones collected in southern Italy. Ind. Crops Prod. 23:212222.Google Scholar
Curn, V., Kubatova, B., Vavrova, P., Krivackova-Sucha, O., and Cizkova, H. 2007. Phenotypic and genotypic variation of Phragmites australis: comparison of populations in two human-made lakes of different age and history. Aquat. Bot. 86:321330.Google Scholar
de Kroon, H. and Van Groenendael, J. 1997. The Ecology and Evolution of Growth in Clonal Plants. Leiden, The Netherlands Backhuys Publishers. 453 p.Google Scholar
Diggle, P. K., Lower, S., and Runker, T. A. 1998. Clonal diversity in alpine populations of Polygonum viviparum (Polygonaceae). Int. J. Plant Sci. 159:606615.Google Scholar
Djebrouni, M. 1992. Variabilité, morphologique, caryologique et enzymatigue chez quelques populations de Phragmites austradis (Cav) Trin. ex Steud. Folia Geobot. Phytotax. Praha. 27:4959.Google Scholar
Dong, M. 1996. Clonal growth in plants in relation to resource heterogeneity: foraging behavior. Acta Bot. Sin. 30:828835.Google Scholar
Ellstrand, N. C. and Roose, M. L. 1987. Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74:123131.Google Scholar
Hanganu, J., Gridin, M., and Coops, H. 1999. Responses of ecotypes Phragmites australis to increased seawater influence: a field study in the Danube Delta, Romania. Aquat. Bot. 64:351358.Google Scholar
Hansen, D. L., Lambertini, C., Jampeetong, A., and Brix, H. 2007. Clone-specific differences in Phragmites australis : effects of ploidy level and geographic origin. Aquat. Bot. 86:269279.Google Scholar
Hauber, D. P., White, D. A., Powers, S. P., and De Francesch, F. R. 1991. Isozyme variation and correspondence with unusual reflectance patterns in Phragmites australis (Poaceae). Plant Syst. Evol. 178:18.Google Scholar
Jackson, J. B. C. Buss, L. W., and Cook, R. E., eds. 1985. Population Biology and Evolution of Clonal Organisms. New Haven, CT, and London Yale University Press. 530 p.Google Scholar
Karunaratne, S. and Asaeda, T. 2002. Mathematical modeling as tool in aquatic ecosystem management. J. Environ. Eng. 128:325359.Google Scholar
Keil, M. and Griffin, A. R. 1994. Use of random amplified polymorphic DNA (RAPD) markers in the discrimination and verification of genotypes in Eucalyptus . Theor. Appl. Genet. 88:442450.Google Scholar
Keller, B. E. M. 2000. Genetic variation among and within populations of Phragmites australis in the Charles River watershed. Aquat. Bot. 66:195208.Google Scholar
Khadari, B., Lashermes, P., and Kjellberg, F. 1995. RAPD fingerprints for identification and genetic characterization of fig (Ficus carica L.) genotypes. J. Genet. Breed. 49:7786.Google Scholar
Khudamrongswart, J., Tayyar, R., and Holt, Y. S. 2004. Genetic diversity of giant reed (Arundo donax) in the Santa Ana River, California. Weed Sci. 52:395405.Google Scholar
Klime˘ěs, L., Klimešová, J., and Ćížková, H. 1999. Carbohydrate storage in rhizomes of Phragmites australis (Cav.) Trin. ex Steud.: the effects of altitude and rhizome age. Aquat. Bot. 64:105110.Google Scholar
Koppitz, H. 1999. Analysis of genetic diversity among selected populations of Phragmites australis world-wide. Aquat. Bot. 64:209221.Google Scholar
Koppitz, H. and Kühl, H. 2000. To the importance of genetic diversity of Phragmites australis in the development of reed stands. Wetland Ecol. Manag. 8:403414.Google Scholar
Koppitz, H., Kühl, H., Hesse, K., and Kohl, J.-G. 1997. Some aspects of the importance of genetic diversity in Phragmites australis (Cav.) Trin. ex Steudel for the development of reed stands. Bot. Acta. 110:217223.Google Scholar
Kühl, H., Koppitz, H., Rolletschek, H., and Kohl, J.-G. 1999. Clone specific differences in Phragmites australis stands. I. Morphology, genetic and site description. Aquat. Bot. 64:235246.Google Scholar
Kühl, H. and Neuhaus, D. 1993. The genetic variability of Phragmites australis investigated by random amplified polymorphic DNA. Seeuferzerstorung and Seeferrenturierung in Mitteleeuropa-Limnologie aktuell. 5:918.Google Scholar
Lambertini, C., Gustafsson, M. H. G., Frydenberg, J., Lissneor, J., Speranza, M., and Brix, H. 2006. A polymorphic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLP. Plant Syst. Evol. 258:161182.Google Scholar
Manly, B.F.J. 1986. Multivariate Statistical Methods. London Chapman and Hall. 214 p.Google Scholar
McKee, J. and Richards, J. 1996. Variation in seed production and germinability in common reed (Phragmites australis) in Britain and France with respect to climate. New Phytol. 133:233–24.Google Scholar
McLellan, A. J., Prati, D., Kaltz, O., and Schimd, B. 1997. Structure and analysis of phenotypic and genetic variation in clonal plants. Pages 185210 in de Kroon, H., and van Groenendael, J., eds. The Ecology and Evolution of Growth in Clonal Plants. Leiden, The Netherlands Backhuys Publishers.Google Scholar
McNaughton, S. J. 1975. R- and K-Selection in Typha . Am. Nat. 109:251261.Google Scholar
Nei, M. and Li, H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleuses. Proc. Natl. Acad. Sci. U. S. A. 79:52695273.Google Scholar
Neuhaus, D., Kühl, H., Kohl, J.-G., Dörfel, P., and Börner, T. 1993. Investigation of genetic diversity of Phragmites stands using genomic fingerprinting. Aquat. Bot. 45:357364.Google Scholar
Paucã-Comãnescu, M., Clevering, O. A., Hanganu, J., and Gridin, M. 1999. Phenotypic differences among ploidy levels of Phragmites australis growing in Romania. Aquat. Bot. 64:223234.Google Scholar
Pellegrin, D. and Hauber, D. P. 1999. Isozyme variation among populations of the clonal species, Phragmites australis (Cav). Trin. ex Steudel. Aquat. Bot. 63:241259.Google Scholar
Ragot, M. and Hoisington, D. A. 1993. Molecular markers for plant breeding: comparison of RFLP and RAPD genotyping costs. Theor. Appl. Genet. 86:975984.Google Scholar
Raybould, A. F., Gray, A. J., Lawrence, M. J., and Marshall, D. F. 1991. The evolution of Spartina G. E. Hubbard (Gramineae): origin and genetic variability. Biol. J. Linn. Soc. 43:111126.Google Scholar
Rogers, S. O. and Bendich, A. J. 1985. Extraction of DNA from milligram amounts of fresh, herbarium, and mummified plant tissues. Plant Mol. Biol. 5:6976.Google Scholar
Rohlf, F. J. 1998. NTSYS–pc. Numerical Taxonomy and Multivariate Analysis System Version 2.00. Setauket, NY Extere Software. 7 p.Google Scholar
Rolletschek, H., Rolletschek, A., Kühl, H., and Kohl, J.-G. 1999. Clone specific differences in a Phragmites australis stand. II. Seasonal development of morphological and physiological characteristis at the natural site and after transplantation. Aquat. Bot. 64:247260.Google Scholar
Romesburg, H. C. 1984. Cluster Analysis for Researches. Belmont, CA Lifetime Learning Publications. 344 p.Google Scholar
Russell, J. R., Fuller, J. D., Macaulay, M., Hatz, B. G., Jahoor, A., Powell, W., and Waugh, R. 1997. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor. Appl. Genet. 95:714722.Google Scholar
Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis in North American. Proc. Nat. Acad. Sci. U. S. A. 99:24452449.Google Scholar
Saltonstall, K. 2003a. Microsatellite variation within and among North American lineages of Phragmites australis . Mol. Ecol. 12:16891702.Google Scholar
Saltonstall, K. 2003b. A rapid method for identifying origin of North American Phragmites populations using RFLP analysis. Wetlands. 23:10431047.Google Scholar
Silander, J. A. Jr. 1985. Microevolution in clonal plants. Pages 107152 in Jackson, J. B. C., Buss, L. W., and Cook, R. E., eds. Population Biology and Evolution of Clonal Organisms. New Haven, CT, and London Yale University Press.Google Scholar
Stebbins, G. L. 1971. Chromosomal Evolution in Higher Plants. London Edward Arnold. 216 p.Google Scholar
Swofford, D. L. and Olsen, G. J. 1990. Phylogeny reconstruction. Pages 411501 in Hillis, D. M., and Moritz, C., eds. Molecular Systematics. Sunderland, MA Sinauer Associates.Google Scholar
Weber, E. and Schmid, B. 1998. Latitudinal population differentiation in two species of Solidago (Asteraceae) introduced into Europe. Am. J. Bot. 85:11101121.Google Scholar
Widén, B., Cronberg, N., and Widén, M. 1994. Genotypic diversity, molecular markers and spatial distribution of genes in clonal plants, a literature survey. Folia Geobot. Phytotax. Praha. 29:245263.Google Scholar
Williams, J.G.K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:65316535.Google Scholar
Zeidler, A., Scheneiders, S., Jung, C., Melchinger, A. E., and Dittrich, P. 1994. The use of DNA fingerprint in ecological studies of Phragmites australis (Cav.). Trin. ex Steudel. Bot. Acta. 107:237242.Google Scholar