Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T07:02:06.707Z Has data issue: false hasContentIssue false

Genetic Diversity of an Alien Invasive Plant Mexican Sunflower (Tithonia diversifolia) in China

Published online by Cambridge University Press:  20 January 2017

Jing Yang
Affiliation:
Kunming Botanical Garden, Kunming Institute of Botany, The Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, 650204, Kunming, Yunnan, China
Ling Tang
Affiliation:
Kunming Botanical Garden, Kunming Institute of Botany, The Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, 650204, Kunming, Yunnan, China
Ya-Li Guan
Affiliation:
Biotechnology Department, College of Life Science, Hainan Normal University, Haikou, Hainan, China
Wei-Bang Sun*
Affiliation:
Kunming Botanical Garden, Kunming Institute of Botany, The Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, 650204, Kunming, Yunnan, China
*
Corresponding author's E-mail: [email protected]

Abstract

Mexican sunflower is a native species of North and Central America that was introduced into China early last century, but it has widely naturalized and become a harmful invasive plant in tropical and subtropical regions in South China. Inter-simple sequence repeat (ISSR) markers were employed to assess genetic diversity and variation in Mexican sunflower populations from China and neighboring regions. The karyotypes of populations were also studied. Our research showed high levels of genetic diversity in all populations. The lowest genetic diversity estimates were represented in two populations in Laos, suggesting prevention of new introductions into Laos is critical. Partitioning of genetic variance revealed that genetic variation was mostly found within populations, and unweighted pair group method with arithmetic means (UPGMA) analysis showed that the introductions into China and Laos were independent. There were no obvious correlations between genetic relationships and geographic distance of populations in China, consistent with the human associated dispersal history of Mexican sunflower. Previous cytological data and our chromosome count (2n = 34) and karyotype analysis showed chromosome stability among populations. The high levels of genetic diversity within invasive Mexican sunflower populations could be challenging for its management in China, and further expansion and potential negative effects on ecological systems of this plant should be monitored.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abdelkrim, J., Pascal, M., and Samadi, S. 2007. Establishing causes of eradication failure based on genetics: case study of ship rat eradication in Ste. Anne archipelago. Conserv. Biol. 21:719730.Google Scholar
Alcorces de Guerra, N., Larez, A., and Mayz, J. 2007. Additions to the cytogenetic knowledge of Tithonia diversifolia (Hemsl.) A. Gray (Asteraceae). Acta. Bot. Venez. 30:267275.Google Scholar
Cai, H., Qian, L. S., Zhang, L., and Wei, C. L. 2006. Chromosome variation and karyotype analysis of invasive weed Sorghum halepense L. J. Nucl. Agric. Sci. 20:490493.Google Scholar
Chukwuka, K. S., Ogunyemi, S., and Fawole, I. 2007. Ecological distribution of Tithonia diversifolia (Hemsl). A. Gray—a new exotic weed in Nigeria. J. Biol. Sci. 7:709719.Google Scholar
Dawson, W., Mndolwa, A. S., Burslem, D., and Hulme, P. E. 2008. Assessing the risks of plant invasions arising from collections in tropical botanical gardens. Biodivers. Conserv. 17:19791995.Google Scholar
Dlugosch, K. M. and Parker, I. M. 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17:431449.Google Scholar
Dodet, M., Petit, R. J., and Gasquez, J. 2008. Local spread of the invasive Cyperus esculentus (Cyperaceae) inferred using molecular genetic markers. Weed Res. 48:1927.Google Scholar
Doyle, J. 1991. DNA protocols for plants—CTAB total DNA isolation. Pages 283293 in Hewitt, G. M. and Johnston, A., eds. Molecular Techniques in Taxonomy. Berlin Springer-Verlag.Google Scholar
Excoffier, L., Laval, G., and Schneider, S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinformatics. 1:4750.Google Scholar
Excoffier, L., Smouse, P. E., and Quattro, J. M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 131:479491.Google Scholar
Facon, B., Pointier, J. P., Glaubrecht, M., Poux, C., Jarne, P., and David, P. 2003. A molecular phylogeography approach to biological invasions of the New World by parthenogenetic Thiarid snails. Mol. Ecol. 12:30273039.Google Scholar
Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Oxford, UK Clarendon Press. 291 p.Google Scholar
Franklin, I. R. 1980. Evolutionary change in small populations. Pages 135150 in Soule, M. E. and Wilcox, B. A., eds. Conservation Biology: An Evolutionary–Eecological Perspective. Sunderland, MA Sinauer Associates.Google Scholar
Gaudeul, M., Giraud, T., Kiss, L., and Shykoff, J. A. 2011. Nuclear and chloroplast microsatellites show multiple introductions in the worldwide invasion history of common ragweed, Ambrosia artemisiifolia . PloS ONE. 6(3):e17658.Google Scholar
Geng, Y. P., Pan, X. Y., Xu, C. Y., Zhang, W. J., Li, B., Chen, J. K., Lu, B. R., and Song, Z. P. 2007. Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biol. Invasions. 9:245256.Google Scholar
Goldblatt, P. and Johnson, D. E. 2012. Index to Plant Chromosome Numbers. http://www.tropicos.org/Project/IPCN. Accessed: May 15, 2012. St. Louis, MO: Missouri Botanical Garden.Google Scholar
Grimsby, J. L., Tsirelson, D., Gammon, M. A., and Kesseli, R. 2007. Genetic diversity and clonal vs. sexual reproduction in Fallopia spp. (Polygonaceae). Am. J. Bot. 94:957964.Google Scholar
Gutierrez-Ozuna, R., Eguiarte, L. E., and Molina-Freaner, F. 2009. Genotypic diversity among pasture and roadside populations of the invasive buffelgrass (Pennisetum ciliare (L.) Link) in north-western Mexico. J. Arid Environ. 73:2632.Google Scholar
Hamrick, J. and Godt, M. 1996. Effects of life history traits on genetic diversity in plant species. Phil. Trans. Roy. Soc. London, Ser. B: Biol. Sci. 351:12911298.Google Scholar
Handley, L. J. L., Estoup, A., Evans, D. M., Thomas, C. E., Lombaert, E., Facon, B., Aebi, A., and Roy, H. E. 2011. Ecological genetics of invasive alien species. BioControl. 56:409428.Google Scholar
Henderson, L. 2001. Alien Weeds and Invasive Plants. A Complete Guide to Declared Weeds and Invaders in South Africa. Pretoria, South Africa Agricultural Research Council, Plant Protection Research Institute. 300 p.Google Scholar
Kang, M., Buckley, Y. M., and Lowe, A. J. 2007. Testing the role of genetic factors across multiple independent invasions of the shrub Scotch broom (Cytisus scoparius). Mol. Ecol. 16:46624673.Google Scholar
Kirkpatrick, M. and Barton, N. H. 1997. Evolution of a species' range. Am. Nat. 150:123.Google Scholar
Kolbe, J. J., Glor, R. E., Schettino, L. R. G., Lara, A. C., Larson, A., and Losos, J. B. 2004. Genetic variation increases during biological invasion by a Cuban lizard. Nature. 431:177181.Google Scholar
Lazarides, M., Cowley, K., and Hohnen, P. 1997. CSIRO Handbook of Australian Weeds. Collingwood, Victoria, Australia CSIRO Publishing. 272 p.Google Scholar
Levan, A., Fredga, K., and Sandberg, A. A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas. 52:201220.Google Scholar
Lewontin, R. C. 1972. The apportionment of human diversity. Evol. Biol. 6:381394.Google Scholar
Li, J. M., Dong, M., and Zhong, Z. C. 2007. Population genetic differentiations in the invasive plant Mikania micrantha in China. Acta Phytoecol. Sin. 31:680688.Google Scholar
Mack, R. N., Simberloff, D., Lonsdale, W. M., Evans, H., Clout, M., and Bazzaz, F. A. 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10:689710.Google Scholar
Meyer, J. Y. 2000. Preliminary review of the invasive plants in the Pacific islands (SPREP Member Countries). Pages 85114 in Sherley, G., ed. Invasive Species in the Pacific: A Technical Review and Draft Regional Strategy. Apia, Samoa South Pacific Regional Environment Programme (SPREP).Google Scholar
Milligan, B. G., Leebensmack, J., and Strand, A. E. 1994. Conservation genetics—beyond the maintenance of marker diversity. Mol. Ecol. 3:423435.Google Scholar
Nei, M. 1987. Molecular Evolutionary Genetics. New York Columbia University Press. 512 p.Google Scholar
Nei, M. and Li, W. H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76:52695273.Google Scholar
O'Hanlon, P. C., Peakall, R., and Briese, D. T. 2000. A review of new PCR-based genetic markers and their utility to weed ecology. Weed Res. 40:239254.Google Scholar
Oyerinde, R. O., Otusanya, O. O., and Akpor, O. B. 2009. Allelopathic effect of Tithonia diversifolia on the germination, growth and chlorophyll contents of maize (Zea mays L.). Sci. Res. Essays. 4:15531558.Google Scholar
Ren, M. X., Li, X. Q., and Ding, J. Q. 2010. Genetic variation and spread pattern of invasive Conyza sumatrensis around China's Three Gorges Dam. Acta Oecol.—Internat. J. Ecol. 36:599603.Google Scholar
Roman, J. and Darling, J. A. 2007. Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol. Evol. 22:454464.Google Scholar
Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., Baughman, S., Cabin, R. J., Cohen, J. E., Ellstrand, N. C., McCauley, D. E., O'Neil, P., Parker, I. M., Thompson, J. N., and Weller, S. G. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32:305332.Google Scholar
Schaal, B. A., Gaskin, J. F., and Caicedo, A. L. 2003. Phylogeography, haplotype trees, and invasive plant species. J. Hered. 94:197204.Google Scholar
Slotta, T. A. B., Rothhouse, J. M., Horvath, D. P., and Foley, M. E. 2006. Genetic diversity of Canada thistle (Cirsium arvense) in North Dakota. Weed Sci. 54:10801085.Google Scholar
Stebbins, G. L. 1971. Chromosomal Evolution in Higher Plants. London Edward Arnold, Ltd. 220 p.Google Scholar
Tang, S. Q., Wei, F., Zeng, L. Y., Li, X. K., Tang, S. C., Zhong, Y., and Geng, Y. P. 2009. Multiple introductions are responsible for the disjunct distributions of invasive Parthenium hysterophorus in China: evidence from nuclear and chloroplast DNA. Weed Res. 49:373380.Google Scholar
Tongma, S., Kobayashi, K., and Usui, K. 1998. Allelopathic activity of Mexican sunflower (Tithonia diversifolia) in soil. Weed Sci. 46:432437.Google Scholar
Tongma, S., Kobayashi, K., and Usui, K. 1999. Allelopathic activity and movement of water leachate from Mexican sunflower [Tithonia diversifolia (Hemsl.) A. Gray] leaves in soil. J. Weed Sci. Technol. 44:5158.Google Scholar
Varnham, K. 2006. Non-native Species in UK Overseas Territories: A Review. Joint Nature Conservation Committee Report No. 372. Peterborough, UK JNCC. 35 p.Google Scholar
Verlaque, R., Affre, L., Diadema, K., Suehs, C. M., and Medail, F. 2011. Unexpected morphological and karyological changes in invasive Carpobrotus (Aizoaceae) in Provence (S-E France) compared to native South African species. C. R. Biol. 334:311319.Google Scholar
Wang, S. H., Sun, W. B., and Cheng, X. 2004. Attributes of plant proliferation, geographic spread and the natural communities invaded by the naturalized alien plant species Tithonia diversifolia in Yunnan, China. Acta Ecol. Sin. 24:444449.Google Scholar
Wang, S. H., Sun, W. B., and Xiao, C. 2008. Reproductive characteristics of Tithonia diversifolia and its geographical spread in Yunnan Province of South-West China. Acta Bot. Sin. 28:13071313.Google Scholar
Wang, X. L. and Li, M. X. 1987. Observation of chromosomes of 10 Compositae species. J. Wuhan Bot. R. 5:111117.Google Scholar
Ward, S. M. 2006. Molecular marker and DNA sequencing methods. Pages 347369 in Motley, T. J., and Cross, H., eds. Darwin's Harvest. New York Columbia University Press.Google Scholar
Ward, S. M., Gaskin, J. F., and Wilson, L. M. 2008a. Ecological genetics of plant invasion: What do we know? Invasive Plant Sci. Manag. 1:98109.Google Scholar
Ward, S. M., Reid, S. D., Harrington, J., Sutton, J., and Beck, K. G. 2008b. Genetic variation in invasive populations of yellow toadflax (Linaria vulgaris) in the western United States. Weed Sci. 56:394399.Google Scholar
Wright, S. 1931. Evolution in Mendelian populations. Genetics. 16:97159.Google Scholar
Wright, S. 1984. Evolution and the Genetics of Populations. Volume 4. Variability Within and Among Natural Populations. Chicago, IL University of Chicago Press. 590 p.Google Scholar
Xie, Z. Y. and Zheng, C. M. 2003. Cytological studies on 13 species of Compositae from Hainan, China. Acta Phytotaxon. Sin. 41:545552.Google Scholar
Xu, C. D., Yang, X., and Lu, S. G. 2007. The invasive plant Tithonia diversifolia in China. Guihaia. 27:564569.Google Scholar
Yeh, F., Yang, R., Boyle, T. B. J., Ye, Z., and Mao, J. 1997. POPGENE, the User-Friendly Shareware for Population Genetic Analysis. Edmonton, Alberta, Canada Molecular Biology and Biotechnology Centre, University of Alberta, Canada. http://www.ualberta.ca/∼fyeh/popgene_download.html Accessed: May 1, 2011.Google Scholar