Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T22:35:41.137Z Has data issue: false hasContentIssue false

Effect of Several Pesticides on the Growth and Nitrogen Assimilation of the Azolla-Anabaena Symbiosis

Published online by Cambridge University Press:  12 June 2017

Robert W. Holst
Affiliation:
Dep. Bot.
John H. Yopp
Affiliation:
Dep. Bot.
George Kapusta
Affiliation:
Dep. Plant and Soil Sci., Southern Illinois Univ., Carbondale, IL 62901

Abstract

Of 15 pesticides evaluated in a screening test with respect to their effects on growth and nitrogen assimilation of the Azolla mexicana (Presl) – Anabaena azollae (Strasburger) symbiosis, the bipyridilium and phenolic herbicides at 0.1 ppmw were the most detrimental, causing up to a 75% reduction in nitrogen fixation and nitrate reduction with little or no effect on growth. Chloramben [3-amino-2,5-dichlorobenzoic acid] at 1.0 ppmw, and dicamba [3,6-dichloro-o-anisic acid], and benomyl [methyl-1-(butylcarbamoyl)-2-benzimidazolyl carbamate] at 10.0 ppmw caused an 84 to 99% reduction in nitrogen fixation without affecting nitrate reduction or growth. Simazine [2-chloro-4,6-bis(ethylamino)-s-triazine] at 10.0 ppmw stimulated nitrate reduction 20 fold, causing a 99% reduction in nitrogen fixation. Growth and nitrogen assimilation were reduced at similar concentrations between 0.1 and 10 ppmw for each of the other benzoic, triazine, dinitroanaline, and urea herbicides tested. Naptalam [N-1-naphthylphthalamic acid] was the only pesticide tested that had no effect on growth or nitrogen assimilation at 10.0 ppmw.

Type
Research Article
Copyright
Copyright © 1982 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris . Plant Physiol. 24:115.CrossRefGoogle Scholar
2. Arvik, J. H., Hyzak, D. L., and Zimdahl, R. L. 1973. Effect of metribuzin and two analogs on five species of algae. Weed Sci. 21:173175.Google Scholar
3. Ashton, F. M. and Crafts, A. S. 1973. Mode of Action of Herbicides. John Wiley & Sons, Inc., New York. 504 pp.Google Scholar
4. Aslam, M. and Huffaker, R. C. 1973. Effect of DCMU, simazine and atrazine on nitrate reductase activity in Hordeum vulgare in vitro and in vivo. Physiol. Plant. 28:400404.Google Scholar
5. Blackburn, R. D. and Weldon, L. W. 1965. The sensitivity of duckweeds (Lemnaceae) and Azolla to diquat and paraquat. Weeds 13:147149.Google Scholar
6. Brenchley, R. G. and Appleby, A. P. 1971. Effect of magnesium and photoperiod on atrazine toxicity to tomatoes. Weed Sci. 19:524525.CrossRefGoogle Scholar
7. Chandler, J. M., Croy, L. I., and Santelmann, P. W. 1972. Alachlor effects on plant nitrogen metabolism and Hill reaction. J. Agric. Food Chem. 20:661664.CrossRefGoogle Scholar
8. Copping, L. G. and Davis, D. E. 1972. Effects of atrazine on chlorophyll retention in corn leaf discs. Weed Sci. 20:8689.Google Scholar
9. Decleire, M., Decat, W., and Bastin, R. 1974. Effets de traitements herbicides a base de trizine et d'uree sur la croissance, la transpiration, l'absorption des nitrates et l'activite de la nitrate reductase du froment (Triticum aestivum . Biochem. Physiol. Pflanz. 165:175184.Google Scholar
10. Decleire, M., vanRoey, G., and Bastin, R. 1976. Effects of triazine herbicides on in vivo nitrite reduction in wheat seedlings (Triticum aestivum . Biochem. Physiol. Pflanz. 170:443447.Google Scholar
11. El-Nawawy, A. S. and Hawdi, Y. A. 1975. Research in blue-green algae in Egypt, 1958–1972. Pages 219228 in Stewart, W.D.P., ed. Nitrogen fixation by free-living microorganisms. Cambridge Univ. Press, London.Google Scholar
12. Finke, R. L., Warner, R. L., and Muzik, T. J. 1977. Effects of herbicides on in vivo nitrate and nitrite reduction. Weed Sci. 25:1822.Google Scholar
13. Holst, R. W. and Yopp, J. H. 1979. Studies of the Azolla-Anabaena symbiosis using Azolla mexicana. I. Growth in nature and laboratory. Amer. Fern J. 69:1725.Google Scholar
14. Holst, R. W. and Yopp, J. H. 1979. Effect of various nitrogen sources on growth and the nitrate-nitrite reductase system of the Azolla mexicana-Anabaena azollae symbiosis. Aquat. Bot. 7:359367.CrossRefGoogle Scholar
15. Holst, R. W. and Yopp, J. H. 1979. Environmental regulation of nitrogenase and nitrate reductase as systems of nitrogen assimilation in the Azolla mexicana-Anabaena azollae symbiosis. Aquat. Bot. 7:369384.CrossRefGoogle Scholar
16. Kallio, S. and Wilkinson, R. E. 1977. The effects of some herbicides on nitrogenase activity and carbon fixation in two subartic lichens. Bot. Gaz. 138:468473.Google Scholar
17. Klepper, L., Flesher, D., and Hageman, R. H. 1971. Generation of reduced nicotinamide adenine dinucleotide for nitrate reduction in green leaves. Plant Physiol. 48:580590.Google Scholar
18. Lumpkin, T. A. and Plunkett, D. L. 1980. Azolla – Botany, physiology, and uses – Green manure. Econ. Bot. 34:111153.CrossRefGoogle Scholar
19. Moreland, D. E., Farmer, F. S., and Hussey, G. G. 1972. Inhibition of photosynthesis and respiration by substituted 2,6-dinitroaniline herbicides. I. Effects of chloroplast and mitochondrial activities. Pest. Biochem. Physiol. 2:343353.Google Scholar
20. Moreland, D. E. and Hill, K. L. 1962. Interference of herbicides with the Hill reaction of isolated chloroplasts. Weeds 10:229236.Google Scholar
21. Nickell, L. G. 1961. Physiological studies with Azolla under aseptic conditions. II. Nutritional studies and the effects of chemicals on growth. Phyton 17:4954.Google Scholar
22. Peters, G. A., Evans, W. R., and Toia, R. E. Jr. 1976. Azolla-Anabaena azollae relationship. IV. Photosynthetically driven, nitrogenase-catalyzed H2 production. Plant Physiol. 58:119126.Google Scholar
23. Pressman, E. and Palevitch, D. 1973. Cytokinin-like activity of benomyl as a senescence inhibitor of broccoli heads. HortScience 8:469497.CrossRefGoogle Scholar
24. Sculthorpe, C. D. 1967. The Biology of Aquatic Vascular Plants. Edward Arnold (Publ.) Ltd. London. 610 pp.Google Scholar
25. DaSilva, E. J., Henriksson, L. E., and Henriksson, E. 1975. Effect of pesticides on blue-green algae and nitrogen fixation. Arch. Environ. Contam. Tox. 3:193204.Google Scholar
26. Sweeney, J. P. 1971. Effects of selected herbicides on provitamin A content of vegetables. J. Agric. Food Chem. 19:854856.Google Scholar
27. Talley, S. N., and Rains, D. W. 1980. Azolla filiculoides Lam. as as fallow-season green manure for rice in a temperate climate. Agron. J. 72:1118.Google Scholar
28. Toia, R. E. Jr., Crist, D. K., Poole, R. E., Bent, P. E., and Peters, G. A. 1981. Effects of selected pesticides on physiology and composition of four Azolla species. Plant Physiol. 67(Suppl.): 81.Google Scholar
29. Tweedy, J. A. and Ries, S. K. 1967. Effect of simazine on nitrate reductase activity in corn. Plant Physiol. 42:280282.Google Scholar
30. Vlassak, K., Heremans, K.A.H., and vanRossen, A. R. 1976. Dinoseb as a specific inhibitor of nitrogen fixation in soil. Soil Biol. Biochem. 8:9193.Google Scholar