Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T05:27:15.953Z Has data issue: false hasContentIssue false

Diurnally Alternating Temperatures Stimulate Sprouting of Purple Nutsedge (Cyperus rotundus) Tubers

Published online by Cambridge University Press:  12 June 2017

Joel E. Miles
Affiliation:
Cntr. for Island Mgt. Studies, The School for Field Studies, Koror, PW 96940, Republic of Palau
Roy K. Nishimoto
Affiliation:
Cntr. for Island Mgt. Studies, The School for Field Studies, Koror, PW 96940, Republic of Palau
Osamu Kawabata
Affiliation:
Dep. Hortic., Univ. Hawaii, Honolulu, HI 96822

Abstract

Experiments were conducted to determine the response of purple nutsedge tuber sprouting to diurnally alternating temperature. These experiments compared the response to alternating and constant temperatures and determined the effect of the amplitude of alternation and time of exposure to the maximum temperature. Tuber sprouting was more rapid and complete with alternating temperatures than with constant temperatures. Increasing temperature fluctuation from 0 to 6 C for 12 h daily linearly increased total tuber sprouting. As little as 30 min exposure to high temperature per day provided nearly the same level of sprouting as a 12 h alternating temperature cycle. This phenomenon should be considered when conducting studies to describe tuber temperature responses or when predicting tuber sprouting and emergence.

Type
Weed Biology and Ecology
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Aleixo, M. De, F.D., and Valio, I.F.M. 1976. Effect of light, temperature and endogenous growth regulators on the growth of buds of Cyperus rotundus L. tubers. Z. Pflanzenphysiol. 80: 336347.CrossRefGoogle Scholar
2. Allen, D. M. and Cady, F. B. 1982. Analyzing experimental data by regression. Pages 239245 in Lifetime Learning. Belmont. CA.Google Scholar
3. Benech Arnold, R. L., Ghersa, C. M., Sanchez, R. A., and Garcia Fernandez, A. E. 1988. The role of fluctuating temperatures in the germination and establishment of Sorghum halepense (L.) Pers. Regulation of germination under leaf canopies. Functional Ecol. 2: 311318.Google Scholar
4. Benech Arnold, R. L., Ghersa, C. M., Sanchez, R. A., and Insausti, P. 1990. Temperature effects on dormancy release and germination rate in Sorghum halepense (L.) Pers. seeds: a quantitative analysis. Weed Res. 30: 8189.CrossRefGoogle Scholar
5. Harrington, G. T. 1923. Use of alternating temperatures in the germination of seeds. J. Agric. Res. 23: 295332.Google Scholar
6. Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. Pages 824 in The World's Worst Weeds. The Univ. Press of Hawaii. Honolulu.Google Scholar
7. Hsu, F. H., Nelson, C. J., and Chow, W. S. 1984. A mathematical model to utilize the logistic function in germination and seedling growth. J. Exp. Bot. 35: 16291640.Google Scholar
8. Justice, O. L. and Whitehead, M. D. 1946. Seed production, viability, and dormancy in the nutgrasses Cyperus rotundus and C. esculentus . J. Agric. Res. 73: 303318.Google Scholar
9. Karssen, C. M. 1982. Seasonal patterns of dormancy in weed seeds. Pages 243270 in Khan, A. A., ed. The Physiology and Biochemistry of Seed Development, Dormancy and Germination. Elsevier. Amsterdam.Google Scholar
10. Littel, R. C., Freund, R. J., and Spector, P. C. 1991. Pages 3739 in SAS System for Linear Models, 3rd ed. SAS Inst., Cary, NC.Google Scholar
11. Morinaga, T. I. 1926. Effect of alternating temperatures upon the germination of seeds. Amer. J. Bot. 13: 141158.CrossRefGoogle Scholar
12. Rubin, B. and Benjamin, A. 1984. Solar heating of the soil: involvement of environmental factors in the weed control process. Weed Sci. 32: 138142.Google Scholar
13. SAS Institute. 1990. Pages 891996 in SAS/STAT User's Guide. Version 6. 4th ed., Vol. 2. SAS Inst., Cary, NC.Google Scholar
14. Scott, S. J., Jones, R. A., and Williams, W. A. 1984. Review of data analysis methods for seed germination. Crop Sci. 24: 11921199.CrossRefGoogle Scholar
15. Shamsi, S.R.A., Al-Ali, F. A., and Hussain, S. M. 1978. Temperature and light requirements for the sprouting of chilled and unchilled tubers of the purple nutsedge. Cyperus rotundus. Physiol. Plant. 44: 193196.Google Scholar
16. Smith, E. V. and Mayton, E. L. 1938. Nut grass eradication studies: II. The eradication of nut grass. Cyperus rotundus L., by certain tillage treatments. J. Amer. Soc. Agron. 30: 1821.Google Scholar
17. Smith, E. V. and Mayton, E. L. 1942. Nut grass eradication studies: III. The control of nut grass. Cyperus rotundus L., on several soil types by tillage. J. Amer. Soc. Agron. 34: 151159.Google Scholar
18. Sun, W. H. and Nishimoto, R. K. 1995. Trigger action in dormancy release of purple nutsedge (Cyperus rotundus L.) tubers by a single warm pulse. Weed Sci. Soc. Amer. Abstr. 35: 249.Google Scholar
19. Teo, C.K.H., Bendixen, L. E., and Nishimoto, R. K. 1973. Bud sprouting and growth of purple nutsedge altered by benzyladenine. Weed Sci. 21: 1923.Google Scholar
20. Totterdell, S. and Roberts, E. H. 1980. Characteristics of alternating temperatures which stimulate loss of dormancy in seeds of Rumex obtusifolius L. and Rumex crispus L. Plant Cell Environ. 3: 312.Google Scholar
21. Tripathi, R. S. 1967. Ecology of Cyperus rotundus L. H. Tuber sprouting in relation to temperature. Proc. Nat. Acad. Sci. India (B) 37: 409412.Google Scholar
22. Ueki, K. 1969. Studies on the control of nutsedge (Cyperus rotundus L.): On the germination of a tuber. Proc. 2nd Asian-Pac. Weed Control Interchange 355369.Google Scholar
23. Wagenvoort, W. A. and Van Opstal, N. A. 1979. The effect of constant and alternating temperatures, rinsing, stratification and fertilizer on germination of some weed species. Scientia Hort. 10: 1520.CrossRefGoogle Scholar
24. Zandstra, B. H. 1976. Herbicidal activity and translocation of glyphosate in Cyperus rotundus L. . Univ. of Hawaii. Honolulu. 91 pp.Google Scholar