Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T16:29:01.308Z Has data issue: false hasContentIssue false

Distribution and Cross-Resistance Patterns of ALS-Inhibiting Herbicide Resistance in Smallflower Umbrella Sedge (Cyperus difformis)

Published online by Cambridge University Press:  20 January 2017

Aldo Merotto Jr.*
Affiliation:
Department of Plant Sciences, University of California, Davis, CA 95616
Marie Jasieniuk
Affiliation:
Department of Plant Sciences, University of California, Davis, CA 95616
Albert J. Fischer
Affiliation:
Department of Plant Sciences, University of California, Davis, CA 95616
*
Corresponding author's E-mail: [email protected]

Abstract

Basic factors contributing to the rapid evolution and broad distribution of acetolactate synthase (ALS)-inhibiting herbicide resistance in smallflower umbrella sedge L. have not yet been investigated. The objectives of this study were to examine patterns of cross-resistance to ALS herbicides and genetic diversity within and among smallflower umbrella sedge populations in California rice fields to provide insight into the processes contributing to resistance spread. Twelve different patterns of herbicide cross-resistance were found across the 56 populations sampled. The frequency of populations with at least one resistant individual in the North, Central and South Sacramento Valley, and the San Joaquin Valley were 76, 86, 67, and 50%, respectively. Analysis of the genetic diversity of 29 populations using 73 sequence-related amplified polymorphism molecular markers revealed little genetic diversity within populations, with estimates of Nei's gene diversity index, h, ranging from 0 to 0.049, and Shannon's information index (I) ranging from 0 to 0.079. Hierarchical analyses of molecular variance indicated that the majority of genetic variation was partitioned among populations, rather than within populations or among regional groups. No isolation by distance was evident. Unweighted pair group method with arithmetic averages analysis indicated that population clustering was not region specific. The results suggest that resistance to ALS-inhibiting herbicides in smallflower umbrella sedge populations from California rice fields appears to have evolved independently multiple times rather than spread from a single population where resistance originated. Consequently, prevention and management of smallflower umbrella sedge in California rice fields should emphasize in-field strategies that focus on decreasing the selection pressure caused by ALS-inhibiting herbicides.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baker, J., Hidayat, I., and Preston, C. 2007. Molecular tools for understanding distribution and spread of weed genotypes. Crop Prot. 26:198205.CrossRefGoogle Scholar
Barrett, S. C. H. and Seaman, D. E. 1980. The weed flora of Californian rice fields. Aquat. Bot. 9:351376.Google Scholar
Bourgeois, L., Kenkel, N. C., and Morrison, I. N. 1997. Characterization of cross-resistance patterns in acetyl-CoA carboxylase inhibitor resistance wild oat (Avena fatua). Weed Sci. 45:750755.Google Scholar
Busi, R., Vidotto, F., Fischer, A. J., Osuna, M. D., De Prado, R., and Ferrero, A. 2006. Patterns of resistance to ALS herbicides in smallflower umbrella sedge (Cyperus difformis) and ricefield bulrush (Schoenoplectus mucronatus). Weed Technol. 20:10041014.CrossRefGoogle Scholar
Cavan, G., Biss, P., and Moss, S. R. 1998. Herbicide resistance and gene flow in wild-oats (Avena fatua and Avena sterilis ssp. ludoviciana). Ann. Appl. Biol. 133:207217.Google Scholar
Christoffers, M. J., Nandula, V. K., Howatt, K. A., and Wehking, T. R. 2006. Target-site resistance to acetolactate synthase-inhibiting herbicides in wild mustard (Sinapsis arvensis). Weed Sci. 54:191197.Google Scholar
Christopher, J. T., Powles, S. B., and Holtum, J. A. M. 1992. Resistance to acetolactate synthase-inhibiting herbicides in annual ryegrass (Lolium rigidum) involves at least two mechanisms. Plant Physiol. 100:19091913.Google Scholar
Cockerham, C. C. 1973. Analyses of gene frequencies. Genetics. 74:679700.CrossRefGoogle ScholarPubMed
Corbett, C. A. L. and Tardif, F. J. 2006. Detection of resistance to acetolactate synthase-inhibiting herbicides in weeds with emphasis on DNA-based techniques: a review. Pest Manag. Sci. 62:584597.Google Scholar
Cousens, R. and Mortimer, M. 1985. The evolution of herbicide resistance. Pages 243282. in Cousens, R. and Mortimer, M. Dynamic of Weed Populations. Cambridge, UK Cambridge University Press.Google Scholar
Dodet, M., Petit, R. J., and Gasquez, J. 2008. Local spread of the invasive Cyperus esculentus (Cyperaceae) inferred using molecular genetic markers. Weed Res. 48:1927.CrossRefGoogle Scholar
Doyle, J. J. and Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:1115.Google Scholar
Excoffier, L., Laval, G., and Scheneider, S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary data analysis. Evol. Bioinf. Onl. 1:4750.Google Scholar
Fischer, A. J., Bayer, D. E., Carriere, M. D., Ateh, C. M., and Yim, K. O. 2000. Mechanisms of resistance to bispyribac-sodium in an Echinochloa phyllopogon accession. Pestic. Biochem. Physiol. 68:156165.Google Scholar
Forlani, G., Nielseren, F., Landi, P., and Tuberosa, R. 1991. Chlorsulfuron tolerance and acetolactate synthase activity in corn (Zea mays L.) inbred lines. Weed Sci. 39:552557.CrossRefGoogle Scholar
Heap, I. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: March 10, 2009.Google Scholar
Hill, J. E., Carriere, M. D., Cook, J. F., Butler, Y. D., Lana, P. J., and Hare, J. 1994. Londax® Resistance Management Strategies for California Rice. Volume 46. San Jose, CA California Weed Science Society. 180185.Google Scholar
Jasieniuk, M., Brûle-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.Google Scholar
Kuk, Y. I., Kim, K. H., Kwon, O. D., Lee, D. J., Burgos, N. R., Jung, S., and Guh, J. O. 2004. Cross-resistance pattern and alternative herbicides for Cyperus difformis resistant to sulfonylurea herbicides in Korea. Pest Manag. Sci. 60:8594.Google Scholar
Lewontin, R. C. 1972. The apportionment of human diversity. Evol. Biol. 6:381398.Google Scholar
Li, G. and Quiros, C. F. 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica . Theor. Appl. Genet. 103:455461.CrossRefGoogle Scholar
Li, R., Wang, S., Duan, L., Li, Z., Christoffers, M. J., and Mengistu, L. 2007. Genetic diversity of wild oat (Avena fatua) populations from China and the United States. Weed Sci. 55:95101.Google Scholar
Llewellyn, R. S., Lindner, R. K., Pannell, D. J., and Powles, S. B. 2002. Resistance and the herbicide resource: perceptions of Western Australian grain growers. Crop Prot. 21:10671075.Google Scholar
Loveless, M. D. and Hamrick, J. L. 1984. Ecological determinations of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15:6596.Google Scholar
Lowe, A., Harris, S., and Ashton, P. 2004. Genetic diversity and differentiation. Pages 52100. in Lowe, A., Harris, S., and Ashton, P. Ecological Genetics. Design, Analysis and Application. Oxford Blackwell.Google Scholar
McCourt, J. A., Pang, S. S., King-Scott, J., Guddat, L. W., and Duggleby, R. G. 2006. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc. Natl. Acad. Sci. USA. 103:569573.CrossRefGoogle ScholarPubMed
Merotto, A. Jr., Jasieniuk, M., and Fischer, A. J. 2009a. Estimating the outcrossing rate of Cyperus difformis using resistance to ALS-inhibiting herbicides and molecular markers. Weed Res. 49:2936.CrossRefGoogle Scholar
Merotto, A. Jr., Jasieniuk, M., Osuna, M. D., Vidoto, F., Ferrero, A., and Fischer, A. J. 2009b. Cross-resistance to herbicides of five ALS-inhibiting groups and sequencing of the ALS gene in Cyperus difformis L. J. Agric. Food Chem. 57:13891398.Google Scholar
Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 70:33213323.Google Scholar
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 89:583590.Google Scholar
Osuna, M. D., Vidotto, F., Fischer, A. J., Bayer, D. E., De Prado, R., and Ferrero, A. 2002. Cross-resistance to bispyribac-sodium and bensulfuron-methyl in Echinochloa phyllopogon and Cyperus difformis . Pest. Biochem. Physiol. 73:917.Google Scholar
Pappas-Fader, T., Turner, R. G., Cook, J. F., Butler, T. D., Lana, P. J., and Carriere, M. D. 1993. Resistance monitoring program for aquatic weeds to sulfonylurea herbicides in California rice fields. Rice Technol. Work Group. 25:165.Google Scholar
Preston, C. and Powles, S. B. 2002. Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum . Heredity. 88:813.Google Scholar
Purrington, C. B. and Bergelson, J. 1997. Fitness consequences of genetically engineered herbicide and antibiotic resistance in Arabidopsis thaliana . Genetics. 145:807814.Google Scholar
Roux, F., Matejicek, A., and Reboud, X. 2005. Response of Arabidopsis thaliana to 22 ALS inhibitors: baseline toxicity and cross-resisitane of csr1-1 and csr1-2 resistant mutants. Weed Res. 45:220227.Google Scholar
Ruiz-Santaella, J. P., Bakkaliu, Y., Osuna, M. D., and de Prado, R. 2004. Evaluation of resistance in Cyperus difformis populations to ALS inhibiting herbicides. Commun. Agric. Appl. Biol. Sci. 69:9196.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 83139. in Powles, S. B. and Holtom, J. A. M. Herbicide Resistance in Plants: Biology and Biochemistry. London CRC Press.Google Scholar
Sanders, B. A. 1994. The life cycle and ecology of Cyperus difformis (rice weed) in temperate Australia: a review. Aust. J. Exp. Agric. 34:10311038.Google Scholar
Schoen, D. J. and Brown, A. H. D. 1991. Intraspecific variation in population gene diversity and effective population size correlation with the mating system in plants. Proc. Natl. Acad. Sci. USA. 88:44944497.Google Scholar
Shivrain, V. K., Burgos, N. R., Moldenhauer, K. A. K., McNew, R. W., and Baldwin, T. L. 2006. Characterization of spontaneous crosses between Clearfield rice (Oryza sativa) and red rice (Oryza sativa). Weed Technol. 20:576584.CrossRefGoogle Scholar
Stankiewicz, M., Gadamski, G., and Gawronski, S. W. 2001. Genetic variation and phylogenetic relationships of triazine-resistant and triazine-susceptible biotypes of Solanum nigrum: analysis using RAPD markers. Weed Res. 41:287300.Google Scholar
Swain, D. J., Nott, M. J., and Trounce, R. B. 1975. Competition between Cyperus difformis and rice and the effect of time of weed removal. Weed Res. 15:149152.Google Scholar
Tanaka, Y., Kajiwara, Y., Kajiwara, T., Noguchi, M., Shimizu, N., and Minami, K. 2006. Sulfonylurea derivates with fused heterocycle moity control sulfonylurea-resistant paddy weeds. Weed Biol. Manag. 6:115119.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.Google Scholar
Tranel, P. J., Wright, T. R., and Heap, I. M. ALS mutations from herbicide-resistant weeds. http://www.weedscience.com. Accessed: March 10, 2009.Google Scholar
Tsuji, R., Fischer, A. J., Yoshino, M., Roel, A., Hill, J. E., and Yamasue, Y. 2003. Herbicide-resistant late watergrass (Echinochloa phyllopogon): similarity in morphological and amplified fragment length polymorphism traits. Weed Sci. 51:740747.Google Scholar
Uchino, A., Ogata, S., Kohara, H., Yoshida, S., Yoshioka, T., and Watanabe, H. 2007. Molecular basis of diverse responses to acetolactate synthase-inhibiting herbicides in sulfonylurea-resistant biotypes of Schoenoplectus juncoides . Weed Biol. Manag. 7:8996.CrossRefGoogle Scholar
Volenberg, D. S. and Stoltenberg, D. E. 2002. Inheritance of resistance in eastern black nightshade (Solanum nigrum) to acetolactate synthase-inhibiting herbicides. Weed Sci. 50:731736.Google Scholar
Whaley, C. M., Wilson, H. P., and Westwood, J. H. 2007. A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Sci. 55:8390.Google Scholar