Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T05:51:53.930Z Has data issue: false hasContentIssue false

Differential Herbicide Response Among Sulfonylurea-Resistant Kochia scoparia L. Accessions

Published online by Cambridge University Press:  12 June 2017

K. Sivakumaran
Affiliation:
Plant and Soil Sci. Dep., Montana State Univ., Bozeman, MT 59717
D. Mulugeta
Affiliation:
Plant and Soil Sci. Dep., Montana State Univ., Bozeman, MT 59717
P. K. Fay
Affiliation:
Plant and Soil Sci. Dep., Montana State Univ., Bozeman, MT 59717
W. E. Dyer
Affiliation:
Plant and Soil Sci. Dep., Montana State Univ., Bozeman, MT 59717

Abstract

Three chlorsulfuron-resistant kochia accessions were tested for levels of resistance to sulfonylurea and imidazolinone herbicides, based on whole plant response and sensitivity of the target enzyme. The resistant Minot and Chester accessions were not affected by treatment with 175 g ha−1 chlorsulfuron, and I50 values for the Chester accession ranged from 22-fold (metsulfuron-methyl) to 196-fold (chlorsulfuron) higher than the susceptible Bozeman accession. However, the Chester accession was 1.5- to 2-fold more resistant than Minot to five sulfonylurea herbicides, as determined by acetolactate synthase (ALS) I50 values. The third resistant accession (Power) displayed an intermediate response and was only 2- to 5-fold more resistant than the susceptible Bozeman accession to all sulfonylurea herbicides tested. The Minot and Chester accessions were slightly cross-resistant to four imidazolinone herbicides, ranging from 2-fold (imazamethabenz, imazethapyr, and imazaquin) to 6-fold (imazapyr) more resistant than the Bozeman accession, but cross-resistance levels did not differ appreciably between the Minot and Chester accessions. The Power accession was not cross-resistant to the four imidazolinone herbicides tested. The results demonstrate that degrees of ALS resistance and cross-resistance are highly variable among kochia populations: these differences may be due to the type of mutation in the gene encoding ALS.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1993 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Carlson, J. R., Ditterline, R. L., Martin, J. M., Sands, D. C., and Lund, R. E. 1983. Alfalfa seed germination in antibiotic agar containing NaCl. Crop Sci. 23:882885.Google Scholar
2. Eberlein, C. V. and Fore, Z. Q. 1984. Kochia biology. Weeds Today 15:56.Google Scholar
3. Guttieri, M. H., Eberlein, C. V., and Hoffman, D. L. 1992. DNA sequence variation in a critical region of the acetolactate synthase gene of herbicide resistant and susceptible weeds. Abstr. Weed Sci. Soc. Am. 32:194.Google Scholar
4. Hall, L. M. and Devine, M. D. 1989. Cross resistance of chlorsulfuron resistant biotype of Stellaria media to a triazole pyrimidine herbicide. Plant Physiol. 93:962966.Google Scholar
5. Hartnett, M. E., Chui, C. F., Falco, S. C., Knowlton, S., Mauvais, C. J., and Mazur, B. J. 1991. Molecular analysis of sulfonylurea herbicide resistant ALS genes. Pages 343353 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Butterworth-Heinemann, Oxford.CrossRefGoogle Scholar
6. Hattori, J. R., Rutledge, H., Labbe, H., Brown, D., Sunohara, G., and Miki, B. 1992. Multiple resistance to sulfonylureas and imidazolinones conferred by an acetohydroxyacid synthase gene with separate mutations for selective resistance. Mol. Gen. Genet. 232:167173.Google Scholar
7. Haughn, G. W., Smith, J., Mazur, B., and Somerville, C. R. 1988. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211:266271.Google Scholar
8. Haughn, G. W. and Somerville, C. R. 1986. Sulfonylurea-resistant mutants of Arabidopsis thaliana . Mol. Gen. Genet. 204:430434.CrossRefGoogle Scholar
9. Haughn, G. W. and Somerville, C. R. 1990. A mutation causing imidazolinone resistance maps to the csrl locus of Arabidopsis thaliana . Plant Physiol. 92:10811085.Google Scholar
10. LaRossa, R. A. and Schloss, J. W. 1984. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium J. Biol. Chem. 259:87538757.Google Scholar
11. Lee, K. Y., Townsend, J., Tepperman, J., Black, M., Chui, C. F., Mazur, B., Dunsmuir, P., and Bedbrook, J. 1988. The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 7:12411248.Google Scholar
12. Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.Google Scholar
13. Mazur, B. J. and Falco, S. C. 1989. The development of herbicide-resistant crops. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:441470.CrossRefGoogle Scholar
14. Mulugeta, D., Fay, P. K., and Dyer, W. E. 1992. The role of pollen in the spread of sulfonylurea resistant Kochia scoparia L. (Schrad.) Weed Sci. Soc. Am. Abstr. 32:48.Google Scholar
15. Newhouse, K., Shaner, D., Wang, T., and Fincher, R. 1990. Genetic modification of crop responses to imidazolinone herbicides. Pages 474486 in Green, M. B., LeBaron, H. M., and Moberg, W. K., eds. Managing Resistance to Agrochemicals: From Fundamental Research to Practical Strategies, ACS Symp. Ser. No. 421. Am. Chem. Soc., Washington, DC.Google Scholar
16. Primiani, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4:169172.Google Scholar
17. Ray, T. B. 1984. Site of action of chlorsulfuron. Inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75:827831.Google Scholar
18. Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea resistance in the broadleaf weed Kochia scoparia . Plant Physiol. 93:5561.Google Scholar
19. Sathasivan, K., Haughn, G. W., and Murai, N. 1991. Molecular basis for imidazolinone herbicide resistance in Arabidopsis thaliana var Columbia. Plant Physiol. 97:10441050.Google Scholar
20. Saxena, P. K. and King, J. 1990. Lack of cross-resistance of imidazolinone-resistant cell lines of Datura innoxia P. Mill. to chlorsulfuron. Plant Physiol. 94:11111115.Google Scholar
21. Shaner, D. L. 1991. Mechanisms of resistance to acetolactate synthase/acetohydroxyacid synthase inhibitors. Pages 187198 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Butterworth-Heinemann, Oxford.Google Scholar
22. Thill, D. C., Mallory-Smith, C. A., Saari, L. L., Cotterman, J. C., Primiani, M. M., and Saladini, J. L. 1991. Sulfonylurea herbicide resistant weeds: discovery, distribution, biology, mechanism, and management. Pages 115128 in Caseley, J. C., Cussans, G. W., and Atkin, R. K., eds. Herbicide Resistance in Weeds and Crops. Butterworth-Heinemann, Oxford.Google Scholar
23. Warwick, S. I. 1991. Herbicide resistance in weedy plants: physiology and population biology. Annu. Rev. Ecol. Syst. 22:95114.Google Scholar
24. Winder, T. and Spalding, M. H. 1988. Imazaquin and chlorsulfuron resistance and cross resistance in mutants of Chlamydomonas reinhardtii . Mol. Gen. Genet. 213:394399.Google Scholar