Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T02:37:47.579Z Has data issue: false hasContentIssue false

Comparison of Restriction Fragment Length Polymorphisms in Chloroplast DNA of Five Leafy Spurge (Euphorbia spp.) Accessions

Published online by Cambridge University Press:  12 June 2017

Scott J. Nissen
Affiliation:
Dep. Agron., Univ. Nebraska; Range Sci., U.S. Dep. Agric., Agric. Res. Serv.
Robert A. Masters
Affiliation:
Dep. Agron., Univ. Nebraska; Range Sci., U.S. Dep. Agric., Agric. Res. Serv.
Donald J. Lee
Affiliation:
Dep. Agron., Univ. Nebraska, Lincoln, NE 68583
Martha L. Rowe
Affiliation:
Dep. Agron., Univ. Nebraska, Lincoln, NE 68583

Abstract

Chloroplast DNA (cpDNA) restriction fragment length polymorphisms (RFLPs) were analyzed to assess genetic variation and relatedness among selections of North American and Eurasian leafy spurge. Leafy spurge accessions from Nebraska, Montana, Russia, Italy, and Austria were evaluated. Total DNA was extracted from young leaves and digested with the restriction endonuclease, EcoRI. CpDNA fragment patterns were determined by Southern blot analysis using mung bean cpDNA probes. Colinearity between the mung bean and leafy spurge chloroplast genomes was indicated by the observation that common fragments were hybridized by adjacent probes. Minimum estimates of chloroplast genome size for the five leafy spurge accessions, which ranged in kilobase size from 130 to 132, were within the size range of most terrestrial plants. Structural collinearity and reasonable estimates of chloroplast genome size provided evidence that the mung bean cpDNA library was suitable for characterizing leafy spurge cpDNA. Seven of the 13 mung bean probes hybridized to polymorphic leafy spurge cpDNA fragments. Based on number of polymorphisms unique to each Eurasian accession, the Austrian accession appeared to be most divergent followed by the Italian and Russian. The North American accessions seem to be most closely related to each other and to the Russian leafy spurge accession.

Type
Weed Biology and Ecology
Copyright
Copyright © 1992 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bakke, A. L. 1936. Leafy spurge, Euphoriba esula L. Iowa Agric. Exp. Stn. Res. Bull. 198:209245.Google Scholar
2. Birnboim, H. C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acid Res. 7:15131523.Google Scholar
3. Bowman, C. M., Bonnard, G., and Dyer, T. A. 1983. Chloroplast DNA variation between species of Triticum and Aegilops: Location of the variation on the chloroplast genome and its relevance to the inheritance and classification of the cytoplasm. Theor. Appl. Genet. 65:247262.Google Scholar
4. Coates, D. and Cullis, C. A. 1987. Chloroplast DNA variability among Linum species. Am. J. Bot. 74:260268.Google Scholar
5. Curtis, S. E. and Clegg, M. T. 1984. Molecular evolution of chloroplast DNA sequences. Mol. Biol. Evol. 1:291301.Google Scholar
6. Doyle, J. J., Doyle, J. L., Brown, A.H.D., and Grace, J. P. 1990. Multiple origins of polyploids in the Glycine tabaciana complex inferred from chloroplast DNA polymorphism. Proc. Nat Acad. Sci., U.S.A. 87:714717.Google Scholar
7. Ebke, D. H. and McCarty, M. K. 1983. A nursery study of leafy spurge (Euphorbia spp.) complex from North America. Weed Sci. 31:866873.Google Scholar
8. Erickson, L. R., Straus, N. A., and Beversdorf, W. D. 1983. Restriction patterns reveal origins of chloroplast genomes in Brassica amphidiploids. Theor. Appl. Genet. 65:201206.CrossRefGoogle Scholar
9. Feinberg, A. P. and Vogelstein, B. 1983. A technique for radiolabelling DNA restriction endonuclease fragments with high specific activity. Anal. Biochem. 132:613.Google Scholar
10. Garber, E. D. 1972. Cytogenetics: An Introduction. McGraw-Hill, New York. Pages 227244.Google Scholar
11. Harris, P., Dunn, P. H., Schroeder, D., and Vanmoos, R. 1985. Biological control of leafy spurge in North America. Pages 7982 in Watson, A. K., ed. Leafy spurge. Monogr. No. 3. Weed Sci. Soc. Am., Champaign, IL.Google Scholar
12. Harvey, S. J., Nowerski, R. M., Mahlberg, P. G., and Story, J. M. 1988. Taxonomic evaluation of leaf and latex variability of leafy spurge (Euphorbia spp.) for Montana and European accessions. Weed Sci. 36:726733.Google Scholar
13. Kung, S. D., Zhu, Y. S., and Shen, G. F. 1982. Nicotiana chloroplast genome. III. Chloroplast DNA evolution. Theor. Appl. Genet. 61:7379.Google Scholar
14. Mahlberg, P. G., Davis, D. G., Galitz, D. S., and Manners, G. D. 1987. Laticifers and the classification of Euphorbia: The chemotaxonomy of Euphorbia esula L. Bot. J. Linn. Soc. 94:165180.Google Scholar
15. Maniatas, T., Fritsch, E. F., and Sambrook, J. 1989. Chapter 6 in Molecular cloning, a laboratory manual. Cold Spring Harbor Lab., Cold Spring Harbor, NY.Google Scholar
16. Manners, G. D. and Davis, D. G. 1984. Epicuticular wax constituents of North American and European Euphorbia esula biotypes. Phytochemistry 23:10591062.Google Scholar
17. Morton, C. V. 1937. The correct name of leafy spurge. Rhodora 39:4950.Google Scholar
18. Palmer, J. D. 1985. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 19:325354.CrossRefGoogle ScholarPubMed
19. Palmer, J. D. 1987. Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Am. Nat. 130:S6S29.Google Scholar
20. Palmer, J. D., Jorgensen, R. A., and Thompson, W. F. 1985. Chloroplast DNA variation and evolution in Pisum: Patterns of change and phylogenetic analysis. Genetics 109:195213.Google Scholar
21. Palmer, J. D., Osorio, B., and Thompson, W. F. 1988. Evolutionary significance of inversions in legume chloroplast DNAs. Curr. Genet. 14:6574.Google Scholar
22. Palmer, J. D., Shields, C. R., Cohen, D. B., and Orton, T. J. 1983. Chloroplast DNA evolution and the origin of amphidiploid Brassica . Theor. Appl. Genet. 65:181189.CrossRefGoogle ScholarPubMed
23. Palmer, J. D. and Thompson, W. F. 1981. Clone banks for mung bean, pea, and spinach chloroplast genomes. Gene 15:2126.Google Scholar
24. Palmer, J. D. and Thompson, W. F. 1982. Chloroplast DNA rearrangements are more frequent when an inverted repeat sequence is lost. Cell 29:537550.Google Scholar
25. Palmer, J. D. and Zamir, D. 1982. Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon . Proc. Nat. Acad. Sci., U.S.A. 79:50065010.Google Scholar
26. Perl-Treves, R. and Galun, E. 1985. The Cucumis plastome: Physical map, intrageneric variation and phylogenetic relationships. Theor. Appl. Genet. 71:417429.Google Scholar
27. Radcliffe-Smith, A. 1981. New combinations in the genus Euphorbia: III. Kew Bull. 36:216.Google Scholar
28. Radcliffe-Smith, A. 1985. Taxonomy of North American leafy spurge. Pages 1425 in Watson, A. K., ed. Leafy spurge. Monogr. No. 3. Weed Sci. Soc. Am., Champaign, IL.Google Scholar
29. Reed, K. C. and Mann, D. A. 1985. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acid Res. 13:72077221.CrossRefGoogle ScholarPubMed
30. Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., and Allard, R. W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Nat. Acad. Sci., U.S.A. 81:80148018.Google Scholar
31. Salts, Y., Herrmann, R. G., Peleg, N., Lavi, U., Izhar, S., Frankel, R., and Beckman, J. S. 1984. Physical mapping of plastid DNA variation among Nicotiana species. Theor. Appl. Genet. 69:114.Google Scholar
32. Schaffer, H. E. and Sederoff, R. R. 1981. Improved estimation of DNA fragment lengths from agarose gels. Anal. Biochem. 115:113122.Google Scholar
33. Schulz-Schaeffer, J. and Gerhardt, S. 1987. Cytotaxonomic analysis of the Euphorbia spp. (“Leafy spurge”) complex. Biol. Zentralbl. 106:429438.Google Scholar
34. Sederoff, R. R. 1984. Structural variation in mitochondrial DNA. Adv. Genet. 22:1108.CrossRefGoogle ScholarPubMed
35. Sytsma, K. J. and Gottlieb, L. D. 1986. Chloroplast DNA evidence for the origin of the genus Heteroguara from a species of Clarkia (Onagraceae). Proc. Nat. Acad. Sci., U.S.A. 83:55545557.CrossRefGoogle ScholarPubMed
36. Terachi, T., Ogihara, Y., and Tsunewaki, K. 1984. The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops. III. Chloroplast genomes of the M and modified M genome-carrying species. Genetics 108:681695.Google Scholar
37. Torell, J. M., Evans, J. O., Valcarce, R. V., and Smith, G. G. 1989. Chemical characterization of leafy spurge (Euphorbia esula L.) by curie-point pyrolysis-gas chromatography-pattern recognition. J. Anal. Appl. Pyrolysis 14:223236.Google Scholar
38. Tsunewaki, K. and Ogihara, Y. 1984. The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops. II. On the origin of polyploid wheat cytoplasms as suggested by chloroplast DNA restriction fragments. Genetics 104:155171.Google Scholar
39. Watson, A. K., ed. 1985. Leafy spurge. Pages 17 in Monogr. No. 3. Weed Sci. Soc. Am., Champaign, IL.Google Scholar
40. Wheeler, L. C. 1939. A miscellany of the new world Euphorbiaceae–II. Contrib. Gray Herb. 127:4878.Google Scholar
41. Whitfield, P. R. and Bottomley, W. 1983. Organization and structure of chloroplast genes. Annu. Rev. Plant Physiol. 34:279310.Google Scholar