Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T07:18:06.892Z Has data issue: false hasContentIssue false

Common ragweed interference in peanut

Published online by Cambridge University Press:  20 January 2017

Scott B. Clewis
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
Shawn D. Askew
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620

Abstract

Studies were conducted to evaluate density-dependent effects of common ragweed on weed growth and peanut growth and yield. Common ragweed height was not affected by weed density and peanut canopy diameter. Weed height exceeded peanut height throughout the growing season, indicating that competition for light occurred between the two species. Common ragweed aboveground dry biomass per plant decreased as weed density increased, but total weed dry biomass per meter of crop row increased with weed density. The rectangular hyperbola model described the effect of weed density on percent peanut yield loss. With the asymptote constrained to 100% maximum yield loss, the I coefficient (yield loss per unit density as density approaches zero) was 68.3 ± 12.2%. Common ragweed did not influence the occurrence of tomato spotted wilt virus, early leaf spot (Cercospora arachidicola), southern stem rot (Sclerotium rolfsii), and Cylindrocladium black rot (Cylindrocladium crotalariae). However, as common ragweed density increased, the incidence of late leaf spot (Cercosporidium personatum) increased. Results indicate that common ragweed is one of the more competitive weeds in peanut and a potential economic threat to peanut growers.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Askew, S. D., Bailey, W. A., and Wilcut, J. W. 1999. Velvetleaf (Abutilon theophrasti Medicus) interference and seed-rain dynamics in North Carolina cotton. Weed Sci. Soc. Am. Abstr. 39:139.Google Scholar
Askew, S. D., Wilcut, J. W., and Scott, G.H. 2001. Tropic croton interference in cotton. Weed Sci. 49:184189.Google Scholar
Bailey, J. 2000. Peanut disease management in 2000. Pages 7186 In 2000 Peanut Information. Raleigh, NC: North Carolina Cooperative Extension Service.Google Scholar
Bazzaz, F. A. 1968. Succession on abandoned fields in the Shawnee Hills, Southern Illinois. Ecology 49:924936.Google Scholar
Bridges, D. C., Brecke, B. J., and Barbour, J. C. 1992. Wild poinsettia (Euphorbia heterophylla) interference with peanut (Arachis hypogaea). Weed Sci. 40:3742.CrossRefGoogle Scholar
Bridges, D. C. and Chandler, J. M. 1987. Influence of johnsongrass (Sorghum halepense) density and period of competition on cotton yield. Weed Sci. 35:6367.Google Scholar
Bridges, D. C., Kvien, C. K., Hook, J. E., and Stark, C. R. Jr. 1994. Herbicide efficacy for weeds of the Virginia-Carolina peanut market area. Appendix 3.1.3, Page 1 In An Analysis of the Use and Benefits of Pesticides in U.S.-Grown Peanuts: III Virginia—Carolina Production Region. Tifton, GA: National Environmentally Sound Production Agriculture Laboratory.Google Scholar
Bryson, C. T. 1987. Interference of hemp sesbania (Sesbania exaltata) with cotton (Gossypium hirsutum). Weed Sci. 35:314318.CrossRefGoogle Scholar
Buchanan, G. A., Murray, D. S., and Hauser, E. W. 1982. Weeds and their control in peanuts. Page 5 In Pattee, H. E. and Young, C. T., eds. Peanut Science and Technology. Ahoskie, NC: . American Peanut Research Society.Google Scholar
Buchanan, G. A., Oliver, L. R., and Chandler, J. M. 1991. Influence of geographic region on jimsonweed interference in soybeans and cotton. Weed Sci. 39:585589.Google Scholar
Cardina, J. and Brecke, B. J. 1989. Growth and development of Florida beggarweed (Desmodium tortuosum) selections. Weed Sci. 37:207210.Google Scholar
Chikoye, D., Weise, S. F., and Swanton, C. J. 1995. Influence of common ragweed (Ambrosia artemissiifolia) time of emergence and density on white bean (Phaseolus vulgaris). Weed Sci. 43:375380.Google Scholar
Chiteka, Z. A., Gorbet, D. W., Shokes, F. M., Kurcharek, T. A., and Knauft, D. A. 1988. Components of resistance to late leaf spot in peanut. Peanut Sci. 15:2530.CrossRefGoogle Scholar
Coble, H. D. and Byrd, J. D. 1992. Interference of weeds with cotton. Pages 7384 In McWhorter, C. G. and Abernathy, J. R., eds. Weeds of Cotton: Characterization and Control. Memphis, TN: The Cotton Foundation.Google Scholar
Coble, H. D., Williams, F. M., and Ritter, R. L. 1981. Common ragweed (Ambrosia artemisiifolia) interference in soybeans (Glycine max). Weed Sci. 29:339342.CrossRefGoogle Scholar
Cousens, R. 1987. Theory and reality of weed control thresholds. Plant Prot. Q. 2:1320.Google Scholar
Cousens, R. 1988. Misinterpretations of results in weed research through inappropriate use of statistics. Weed Res. 28:281289.Google Scholar
Dickerson, C. and Sweet, R. D. 1971. Common ragweed ecotypes. Weed Sci. 19:6466.CrossRefGoogle Scholar
Dowler, C. C. 1998. Weed survey—southern states. Proc. South. Weed Sci. Soc. 51:299322.Google Scholar
Draper, N. R. and Smith, H. 1981. Pages 3342 and 511 In Applied Regression Analysis. New York: Wiley.Google Scholar
Hackett, N. M., Murray, D. S., and Weeks, D. L. 1987. Interference of horsenettle (Solanum carolinense) with peanuts (Arachis hypogaea). Weed Sci. 35:780784.Google Scholar
Hau, F. C., Campbell, C. L., and Beute, M. K. 1982. Inoculum distribution and sampling methods for Cylindrocladium crotalariae in a peanut field. Plant Dis. 66:568571.Google Scholar
Hauser, E. W., Buchanan, G. A., Nichols, R. L., and Patterson, R. M. 1982. Effects of Florida beggarweed (Desmodium tortousum) and sicklepod (Cassia obtusifolia) on peanut (Arachis hypogaea) yield. Weed Sci. 30:602604.Google Scholar
Jasieniuk, M., Maxwell, B. D., Anderson, R. L., et al. 1999. Site-to-site and year-to-year variation in Triticum aestivum-Aegilops cylindrica interference relationships. Weed Sci. 47:529537.Google Scholar
Jordan, D. L. 2000. Peanut disease management in 2000. Pages 825 In 2000 Peanut Information. Raleigh, NC: North Carolina Cooperative Extension Service.Google Scholar
Keever, C. 1950. Causes of succession on old fields of the Piedmont, North Carolina. Ecol. Monogr. 21:8994.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.Google Scholar
Rodriguez-Kabana, R., Backman, P. A., and Williams, J. C. 1975. Determination of yield losses to Sclerotium rolfsii in peanut fields. Plant Dis. 59:855858.Google Scholar
Royal, S. S., Brecke, B. J., Shokes, F. M., and Colvin, D. L. 1997. Influence of broadleaf weeds on chlorothalonil deposition, foliar disease incidence, and peanut (Arachis hypogaea) yield. Weed Technol. 11:5158.Google Scholar
Rushing, D. W., Murray, D. S., and Verhalen, L. M. 1985. Weed interference with cotton (Gossypium hirsutum). II. Tumble pigweed (Amaranthus albus). Weed Sci. 33:815818.Google Scholar
Sartorato, I., Berti, A., and Zanin, G. 1996. Estimation of economic thresholds for weed control in soybean (Glycine max (L.) Merr.). Crop Prot. 15:6368.Google Scholar
[SAS] Statistical Analysis Systems. 1998. SAS/STAT® User's Guide. Release 7.00. Cary, NC: Statistical Analysis Systems Institute. 1028 p.Google Scholar
Scott, G. H., Askew, S. D., Wilcut, J. W., and Brownie, C. 2000. Datura stramonium interference and seed rain in Gossypium hirsutum . Weed Sci. 48:613617.Google Scholar
Sherwood, J. L., Beute, M. K., Dickerson, D. W., Elliott, V. J., Nelson, R. S., Opperman, C. H., and Shew, B. B. 1995. Biological and biotechnological control advances in Arachis diseases. Pages 160206 In Pattee, H. E. and Stalker, H. T., eds. Advances in Peanut Science. Stillwater, OK: American Peanut Research and Education Society.Google Scholar
Snipes, C. E., Buchanan, G. A., Street, J. E., and McGuire, J. A. 1982. Competition of common cocklebur (Xanthium pensylvanicum) with cotton (Gossypium hirsutum). Weed Sci. 30:553556.Google Scholar
Swanton, C. J., Weaver, S., Cowan, P., Van Acker, R., Deen, W., and Shreshta, A. 1999. Weed thresholds: theory and applicability. Pages 929 In Buhler, D. D., ed. Expanding the Context of Weed Management. Binghamton, NY: Food Products Press, an imprint of The Haworth Press.Google Scholar
Walker, R. H., Wells, L. W., and McGuire, J. A. 1989. Bristly starbur (Acanthospermum hispidium) interference in peanuts (Arachis hypogaea). Weed Sci. 37:196200.Google Scholar
Wilcut, J. W. and Swann, C. W. 1990. Timing of paraquat applications for weed control in Virginia-type peanuts (Arachis hypogaea). Weed Sci. 38:558562.Google Scholar
Wilcut, J. W., York, A. C., and Wehtje, G. R. 1994. The control and interaction of weeds in peanut (Arachis hypogaea). Rev. Weed Sci. 6:177205.Google Scholar
Wilcut, J. W., York, A. C., Grichar, W. J., and Wehtje, G. R. 1995. The biology and management of weeds in peanut (Arachis hypogaea). Pages 207244 In Pattee, H. E. and Stalker, H. T., eds. Advances in Peanut Science. Stillwater, OK: American Peanut Research and Education Society.Google Scholar
Yenish, J. P., Fry, T. A., Durgan, B. R., and Wyse, D. L. 1997. Establishment of common milkweed (Asclepias syriaca) in corn, soybean, and wheat. Weed Sci. 45:4453.CrossRefGoogle Scholar
Young, J. H., Person, N. K., Donald, J. O., and Mayfield, W. H. 1982. Harvesting, curing, and energy utilization. Pages 458487 In Pattee, H. E. and Young, C. T., eds. Peanut Science and Technology. Yoakum, TX: American Peanut Research and Education Society.Google Scholar