Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T18:10:05.177Z Has data issue: false hasContentIssue false

A Chlamydomonas Algal Bioassay for Detecting Growth Inhibitor Herbicides

Published online by Cambridge University Press:  12 June 2017

F. D. Hess*
Affiliation:
Dep. Bot. & Plant Pathol., Purdue Univ., West Lafayette, IN 47907

Abstract

The single-celled green alga Chlamydomonas eugametos was found to be well suited for detecting growth inhibitor activity of chemicals. Tests consisted of solubilizing technical grade compounds in 20-ml aliquots of a 1 × 105 cells/ml zoospore culture. Commercially available growth inhibitor herbicides significantly inhibited synchronous cell population increases within 48 h at concentrations ranging from 1 × 10−4 to 1 × 10−7M. Examples of compounds that inhibited Chlamydomonas more than 50% were butylate (S-ethyl diisobutylthiocarbamate) and diallate [S-(2,3-dichloroallyl)diisopropylthiocarbamate] at 1 × 10−4M, CDEC [2 chloroallyl diethyldithiocarbamate] and propham (isopropyl carbanilate) at 1 × 10−5M, alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide] and trifluralin [α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine] at 1 × 10−6 M, and bifenox [methyl 5-(2,4-dichlorophenoxy)-2-nitrobenzoate] at 1 × 10−7M. Ethanol, dimethylsulfoxide (DMSO), or acetone can be used to solubilize herbicides in the aqueous medium. DMSO and ethanol are not detrimental to the cells if the concentration is kept at 1% v/v or less.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Addison, D. A. and Bardsley, C. E. 1968. Chlorella vulgaris assay of the activity of soil herbicides. Weed Sci. 16:427429.CrossRefGoogle Scholar
2. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris . Plant Physiol. 24:115.Google Scholar
3. Ashton, F. M. and Crafts, A. S. 1973. Mode of action of herbicides. Pages 200220. J. Wiley & Sons, N.Y. Google Scholar
4. Ashton, F. M., de Villiers, O. T., Glenn, R. K., and Duke, W. B. 1977. Localization of metabolic sites of action of herbicides. Pestic. Biochem. & Physiol. 7:122141.CrossRefGoogle Scholar
5. Bernstein, E. 1960. Synchronous division of Chlamydomonas moewusii . Science 131:15281529.Google Scholar
6. Casida, J. E., Gray, R. A., and Tilles, H. 1974. Thiocarbamate sulfoxides: Potent, selective, and biodegradable herbicides. Science 184:573574.Google Scholar
7. Helling, C. S., Kaufman, D. K., and Dieter, C. T. 1971. Algae bioassay detection of pesticide mobility in soils. Weed Sci. 19:685690.Google Scholar
8. Hess, F. D. 1979. The influence of the herbicide trifluralin on flagellar regeneration in Chlamydomonas . Exp. Cell Res. 119:99109.Google Scholar
9. Horowitz, M. 1976. Application of bioassay techniques to herbicide investigations. Weed Res. 16:209215.Google Scholar
10. Kates, J. R. and Jones, R. F. 1964. The control of genetic differentiation in liquid cultures of Chlamydomonas . J. Cell. Comp. Physiol. 63:157164.Google Scholar
11. Klotz, F. K. and Duysen, M. E. 1972. Light control of the growth and metabolic responses of Chlorella to 2,4-dichlorophenoxyacetic acid. Plant. Physiol. 49:63 (Suppl.)Google Scholar
12. Kratky, B. A. and Warren, G. F. 1971. A rapid bioassay for photosynthetic and respiratory inhibitors. Weed Sci. 19:658661.Google Scholar
13. Kratky, B. A. and Warren, G. F. 1971. The use of three-simple, rapid bioassays on forty-two herbicides. Weed Res. 11:257262.Google Scholar
14. Loeppky, C. and Tweedy, B. G. 1969. Effects of selected herbicides upon growth of soil algae. Weed Sci. 17:110113.CrossRefGoogle Scholar
15. Pillay, A. R. and Tchan, Y. T. 1972. Study of soil algae. VII. Adsorption of herbicides in soil and prediction of their rate of application by algal methods. Plant Soil 36:571594.Google Scholar
16. Ross, C. W. 1974. Plant Physiology Laboratory Manual. Pages 182184. Wadsworth Publishing Co., Inc., Belmont, CA.Google Scholar
17. Sager, R. and Granick, S. 1953. Nutritional studies with Chlamydomonas reinhardi . Ann. N.Y. Acad. Sci. 56:831838.Google Scholar
18. Savage, K. E. 1977. Availability and behavior of soil-applied herbicides. Tech. Bul. 87. South. Weed Sci. Lab., Agric. Res. Serv., USDA, Stoneville, MS. 10 pp.Google Scholar
19. Sorokin, C. 1973. Dry weight, packed cell volume and optical density. Pages 321343. In Stein, J. R., ed. Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge Univ. Press, London.Google Scholar
20. Steel, R. G. D. and Torrie, J. H. 1960. Principles and Procedures of Statistics. Pages 107109. McGraw-Hill, N.Y. Google Scholar
21. Thomas, V. M. Jr., Buckley, L. J., Sullivan, J. D. Jr., and Ikawa, M. 1973. Effects of herbicides on the growth of Chlorella and Bacillus using the paper disc method. Weed Sci. 21:448451.CrossRefGoogle Scholar
22. Vanstone, D. E. and Stobbe, E. H. 1977. Electrolytic conductivity – a rapid measure of herbicide injury. Weed Sci. 25:352354.Google Scholar
23. Witman, G. B., Carlson, K., Berliner, J., and Rosenbaum, J. L. 1972. Chlamydomonas flagella I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J. Cell Biol. 54:507539.Google Scholar
24. Wood, D. C. and Wood, J. 1975. Pharmacologic and biochemical considerations of dimethyl sulfoxide. Ann. N.Y. Acad. Sci. 243:719.Google Scholar
25. Wright, S. J. L. 1972. The effect of some herbicides on the growth of Chlorella pyrenoidosa . Chemosphere 1:1114.Google Scholar
26. Wright, S. J. L. 1975. A simple agar plate method, using micro-algae, for herbicide bio-assay or detection. Bull. Environ. Contam. and Toxicol. 14:6570.Google Scholar
27. Zilkah, S. and Gressel, J. 1977. Cell culture vs. whole plants for measuring phytotoxicity. III. Correlations between phytotoxicities in cell suspension cultures, calli and seedlings. Plant Cell Physiol. 18:815820.Google Scholar