Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T16:56:02.721Z Has data issue: false hasContentIssue false

A biochemical study of BAS 517 using excised corn and soybean root systems

Published online by Cambridge University Press:  12 June 2017

Hwei-Yiing Li
Affiliation:
Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061–0331

Abstract

The mode of action of BAS 517 in a susceptible plant species, corn, was investigated using an excised root system and 14C-tracer techniques. The root system of a tolerant species, soybean, was used for comparison. When UL-14C- glucose was used as a precursor, 14C incorporation into lipids was reduced in BAS 517-treated corn roots, although 14C incorporation from UL-14C-glucose into lipids was relatively low. Inhibition of 14C incorporation into water-soluble compounds was not definite because of a high degree of variability. Using 14C-acetate as a precursor, 49, 43, and 34% of the recovered radioactivity was found in the lipid fractions of root tips treated with 0, 1.0, and 10 μM BAS 517, respectively. In nontreated soybean root tips, 47% of the recovered radioactivity was found in the lipid fraction compared to 49% in root tips treated with 10 μM BAS 517. Further analysis of lipids showed that BAS 517 inhibited the incorporation of 14C from 14C-acetate into phosphatidylethanolamine, a phospholipid, whereas the labeling of sterols in treated corn roots was not adversely affected. Acetyl CoA carboxylase extracted from root systems of corn and soybean showed different sensitivity to BAS 517, suggesting its role as the herbicide target site and as a basis for the selectivity.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1999 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 1984. Company Technical Data Sheet on BAS 517 OH Experimental Herbicide. Parsippany, NJ: BASH Wyandotte Corporation. 4 p.Google Scholar
Anonymous. 1988. Chap. 1 in BASF Company Poast Herbicide Advisor's Handbook. Section B: Agronomic crops. Soybeans. Parsippany, NJ: BASF Corporation.Google Scholar
Asare-Boamah, N. K. and Fletcher, R. A. 1983. Physiological and cytological effects of BAS 9052 OH on corn (Zea mays) seedlings. Weed Sci. 31: 4955.Google Scholar
Boyer, P. D. 1970. Acetyl-CoA carboxylase. Pages 5382 in The Enzymes. Volume VI. New York: Academic Press.Google Scholar
Brezeanu, A. G., Davis, D. G., and Shimabukuro, R. H. 1976. Ultrastructural effects and translocation of methyl-2-(4-dichlorophenoxy)-phenoxy)propanoate in wheat (Triticum aestivum) and wild oat (Avena fatua). Can. J. Bot. 54: 20382048.Google Scholar
Burgstahler, R. J., Retzlaff, G., and Lichtenthaler, H. K. 1986. Mode of action of sethoxydim: effect on the plant's lipid metabolism. In 6th IUPAC Congress on Pesticides and Chemicals Abstr. 3B-11.Google Scholar
Burton, J. D. 1997. Acetyl-coenzyme A carboxylase inhibitors. Pages 187205 in Roe, R. M., Burton, J. D., and Kuhr, R. J., eds. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Amsterdam: IOS Press.Google Scholar
Burton, J. D., Gronwald, J. W., Somers, D. A., Connelly, J. A., Gengenbach, B. G., and Wyse, D. L. 1987. Inhibition of plant acetyl-coenzyme A carboxylase by the herbicides sethoxydim and haloxyfop. Biochem. Biophys. Res. Commun. 148: 10391044.Google Scholar
Burton, J. D., Gronwald, J. W., Somers, D. A., Gengenbach, B. G., and Wyse, D. L. 1989. Inhibition of corn acetyl-CoA carboxylase by cyclohexanedione and aryloxyphenoxypropionate herbicides. Pestic. Biochem. Physiol. 34: 7685.Google Scholar
Chandrasena, J.P.N.R. and Sagar, G. R. 1987. Effect of fluazifop-butyl on the chlorophyll content, fluorescence, and chloroplast ultrastructure of Elymus repens (L.) Gould. leaves. Weed Res. 27: 103112.Google Scholar
Cho, H. Y., Widholm, J. M., and Slife, F. W. 1986. Effects of haloxyfop on corn (Zea mays) and soybean (Glycine max) suspension cultures. Weed Sci. 34: 496501.CrossRefGoogle Scholar
Danks, M. L., Fletcher, J. S., and Rice, E. L. 1975. Effects of phenolic inhibitors on growth and metabolism of glucose-UL-14C in paul's scarlet rose cell-suspension cultures. Am. J. Bot. 62: 311317.Google Scholar
Devine, M. D. and Shimabukuro, R. H. 1994. Resistance to acetyl coenzyme A carboxylase inhibiting herbicides. Pages 141169 in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis Publishers.Google Scholar
Di Tomaso, J. M. 1994. Evidence against a direct membrane effect in the mechanism of action of graminicides. Weed Sci. 42: 302309.Google Scholar
Duke, S. O. and Kenyon, W. H. 1988. Polycyclic alkanoic acids. Pages 71116 in Kearney, P. C. and Kaufman, D. D., eds. Herbicides: Chemistry, Degradation and Mode of Action. Volume 3. New York: Marcel-Dekker.Google Scholar
Finlayson, S. A. and Dennis, D. T. 1983. Acetyl-coenzyme A carboxylase from the developing endosperm of Ricinus communis . Arch. Biochem. Biophys. 225: 576585.Google Scholar
Focke, M. and Lichtenthaler, H. K. 1987. Inhibition of the acetyl-CoA carboxylase of barley chloroplasts by cycloxydim and sethoxydim. Z. Naturforsch. 42c: 13611363.Google Scholar
Gealy, D. R. and Slife, F. W. 1983. BAS 9052 effects on leaf photosynthesis and growth. Weed Sci. 31: 457461.Google Scholar
Goodwin, T. W. 1977. Biochemistry of lipids II. Pages 216273 in Kornberg, H. L. and Phillips, D. C., eds. International Review of Biochemistry. Volume 14. Baltimore: University Park Press.Google Scholar
Goodwin, T. W. and Mercer, E. I. 1983. Lipid metabolism. Pages 274285 in Introduction to Plant Biochemistry. 2nd ed. New York: Pergamon Press.Google Scholar
Gregolin, C., Ryder, E., Warner, R. C., Kleinschmidt, A. K., Chang, H. C., and Lane, D. 1968. Liver acetyl coenzyme A carboxylase II. Further molecular characterization. J. Biol. Chem. 243: 42364245.Google Scholar
Gronwald, J. W. 1986. Effect of haloxyfop and haloxyfop-methyl on elongation and respiration of corn (Zea mays) and soybean (Glycine max) roots. Weed Sci. 34: 196202.Google Scholar
Gronwald, J. W. 1991. Lipid biosynthesis inhibitors. Weed Sci. 39: 435449.Google Scholar
Gronwald, J. W. 1994. Herbicides inhibiting acetyl-CoA carboxylase. Biochem. Soc. Trans. 22: 157165.Google Scholar
Gurr, M. I., Blades, L., Appleby, R. S., and Smith, C. G. 1974. Studies on seed-oil triglycerides. Triglyceride biosynthesis and storage in whole seeds and oil bodies of Crambe abyssinica. Eur. J. Biochem. 43: 281290.Google Scholar
Harwood, J. L. 1988. Fatty acid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 101138.Google Scholar
Harwood, J. L. 1989. The properties and importance of acetyl-coenzyme A carboxylase in plants. Pages 155162 in Proceedings of the Brighton Crop Protection Conference—Weeds.Google Scholar
Hatzios, K. K. 1982. Effects of sethoxydim on the metabolism of isolated leaf cells of soybean [Glycine max (L.) Merr.]. Plant Cell Rep. 1: 8790.Google Scholar
Hoppe, H. H. 1980a. Einfluss von Diclofop-methyl auf Wachstum und Entwicklung der Keimlinge von Zea mays L. Weed Res. 20: 371376.Google Scholar
Hoppe, H. H. 1980b. Veranderungen der Membranpermeabilitat, des Kohlenhydratgehaltes, des Lipidgehaltes und der Lipidzusammensetzung in Keimwurzelspitzen von Zea mays L. Nach Behandlung mit Diclofop-methyl. Z. Pflanzenphysiol. 100: 415426.Google Scholar
Hoppe, H. H. 1981. Einfuss von Diclofop-methyl auf die Protein-, Nukleinsaure- und Lipidbiosynthese der Keimwurzelspitzen von Zea mays L. Z. Pflanzenphysiol. 102: 189197.Google Scholar
Hoppe, H. H. 1985. Differential effect of diclofop-methyl on fatty acid biosynthesis in leaves of sensitive and tolerant plant species. Pestic. Biochem. Physiol. 23: 297308.Google Scholar
Hoppe, H. H. 1989. Fatty acid biosynthesis—a target site of herbicide action. Pages 6583 in Böger, P. and Sandermann, G., eds. Boca Raton, FL: CRC Press.Google Scholar
Hoppe, H. H. and Zacher, H. 1982. Hemmung del Fettsaurebiosynthese durch Diclofop-methyl in Keimwurzelspitzen von Zea mays . Z. Pflanzenphysiol. 106: 287298.Google Scholar
Hosaka, H. and Takagi, M. K. 1987a. Physiological responses to sethoxydim in tissues of corn (Zea mays) and pea (Pisum sativum). Weed Sci. 35: 604611.CrossRefGoogle Scholar
Hosaka, H. and Takagi, M. K. 1987b. Biological effects of sethoxydim in excised root tips of corn (Zea mays). Weed Sci. 35: 612618.Google Scholar
Huber, R., Hamm, R., Ohnsorge, U., and Türk, W. 1988. The metabolism of cycloxydim in soybeans. Proc. Brighton Crop Prot. Conf. Pests Dis. 1: 335341.Google Scholar
Incledon, B. J. and Hall, J. C. 1997. Evidence that maize acetyl-coenzyme A carboxylase does not function solely as a homodimer. J. Agric. Food Chem. 45: 48384844.Google Scholar
Ishihara, K., Hosaka, H., Kubota, M., Kamimura, H., and Yasuda, Y. 1986. Effects of sethoxydim on the metabolism of excised root tips of corn. In 6th IUPAC Congress on Pesticides and Chemicals Abstr. 3B-10.Google Scholar
Jain, R. and Vanden Born, W. H. 1989. Morphological and histological effects of three grass herbicides on developing wild oat (Avena fatua) stems. Weed Sci. 37: 575584.Google Scholar
Kannangara, C. G. and Stumpf, P. K. 1972. Fat metabolism in higher plants. LIV. A procaryotic type acetyl CoA carboxylase in spinach chloroplasts. Arch. Biochem. Biophys. 152: 8391.Google Scholar
Kannangara, C. K. and Stumpf, P. K. 1973. Fat metabolism in higher plants. LVI. Distribution and nature of biotin in chloroplasts of different plant species. Arch. Biochem. Biophys. 155: 391399.Google Scholar
Kobek, K., Focke, M., and Lichtenthaler, H. K. 1988a. Fatty acid biosynthesis and acetyl-CoA carboxylase as a target of diclofop, fenoxaprop, and other aryloxy-phenoxy-propionic acid herbicides. Z. Naturforsch. 43c: 4754.Google Scholar
Kobek, K., Focke, M., Lichtenthaler, H. K., Retzlaff, G., and Wurzer, B. 1988b. Inhibition of fatty acid biosynthesis in isolated chloroplasts by cycloxydim and other cyclohexane-1,3-diones. Physiol. Plant 72: 492498.Google Scholar
Lane, D., Moss, J., and Polakis, S. E. 1975. Acetyl coenzyme A carboxylase. Pages 181221 in Ebner, K. E., ed. Enzymology. Volume 2. New York: Marcel-Dekker.Google Scholar
Lehninger, A. L. 1975. Lipids, lipoproteins, and membranes. Pages 279300 in Biochemistry. 2nd ed. New York: Worth Publishers.Google Scholar
Li, H-Y. 1990. Mechanism of Action and Selectivity of the Cyclohexenone Herbicide Cycloxydim (BAS 517). . Virginia Polytechnic Institute and State University, Blacksburg, VA. 122 p.Google Scholar
Lichtenthaler, H. K., Kobek, K., and Focke, M. 1989. Differences in sensitivity and tolerance of monocotyledonous and dicotyledonous plants toward inhibitors of acetyl-coenzyme A carboxylase. Pages 173182 in Proceedings of the Brighton Crop Protection Conference—Weeds.Google Scholar
Lin, L. and Tanner, H. 1985. Quantitative HPTLC analysis of carboxylic acids in wine and juice. J. High Resolut. Chromatogr. Commun. 8: 126131.Google Scholar
Maier, A., Golz, A., Lichtenthaler, H. K., Meyer, N., and Retzlaff, G. 1994. Studies on the effect of different cyclohexane-l,3-diones on de-novo fatty acid biosynthesis in Poaceae. Pestic. Sci. 42: 153161.Google Scholar
Nikolau, B. J. and Hawke, J. C. 1984. Purification and characterization of maize leaf acetyl-coenzyme A carboxylase. Arch. Biochem. Biophys. 228: 8696.Google Scholar
Ohlrogge, J. and Browse, J. 1995. Lipid biosynthesis. Plant Cell 7: 957970.Google Scholar
Rendina, A. R., Beaudoin, J. D., Graig-Kennard, A. C., and Breen, M. K. 1989. Kinetics of inhibition of acetyl-coenzyme A carboxylase by the aryloxyphenoxypropionate and cyclohexanedione graminicides. Proc. Brighton Crop Prot. Conf. 1: 163172.Google Scholar
Rendina, A. R. and Felts, J. 1988. Cyclohexanedione herbicides are selective and potent inhibitors of acetyl CoA carboxylase from grasses. Plant Physiol. 86: 983986.Google Scholar
Secor, J. and Cséke, C. 1988. Inhibition of acetyl-CoA carboxylase activity by haloxyfop and tralkoxydim. Plant Physiol. 86: 1012.Google Scholar
Secor, J., Cséke, C., and Owen, W. J. 1989. The discovery of the selective inhibition of acetyl coenzyme A carboxylase activity by two classes of graminicides. Pages 145154 in Proceedings of the Brighton Crop Protection Conference—Weeds.Google Scholar
Stoltenberg, D. E., Gronwald, J. W., Wyse, D. L., Burton, J. D., Somers, D. A., and Gengenbach, B. G. 1989. Effects of sethoxydim and haloxyfop on acetyl-coenzyme A carboxylase activity in Festuca species. Weed Sci. 37: 512516.Google Scholar
Stryer, L. 1981. Biosynthesis of membrane lipids and steroid hormones. Pages 457485 in Biochemistry. 2nd ed. San Francisco: W. H. Freeman.Google Scholar
Stumpf, P. K. 1987. The biosynthesis of saturated fatty acids. Pages 121136 in Stumpf, P. K. and Conn, E. E., eds. Lipids: Structure and Function. Volume 9. New York: Academic Press.Google Scholar
Tomas, E. and Davey, M. R. 1975. The culture of plant organs. Chap. 3 in From Single Cells to Plants. London: Wykeham Publication.Google Scholar
Walker, K. A., Ridley, S. M., Lewis, T., and Harwood, J. L. 1988. Action of aryloxy-phenoxy carboxylic acids in lipid metabolism. Rev. Weed Sci. 4: 7184.Google Scholar
White, P. R. 1943. A Handbook of Plant Tissue Culture. New York: Ronald Press.Google Scholar