Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T18:21:29.389Z Has data issue: false hasContentIssue false

Bioassay of Benazolin for Auxin Activity Using the Pea (Pisum sativum) Straight Growth Test

Published online by Cambridge University Press:  12 June 2017

Laura L. Whatley
Affiliation:
Dep. Plant Pathol. and Weed Sci., Mississippi State Univ., P.O. Drawer PG, Mississippi State, MS 39762-6007
Fred W. Slife
Affiliation:
Dep. Agron., Univ. of Illinois, 1102 S. Goodwin Ave., Urbana, IL 61801-4798

Abstract

In the pea straight growth bioassay, both benazolin and indole-3-acetic acid (auxin) solutions promoted the elongation of etiolated pea (Pisum sativum L. ‘Alaska’) epicotyls. Maximal elongation occurred at auxin concentrations ranging from 10-6 to 10-4 M; comparable elongation occurred at a benazolin concentration of 10-4 M. Results of this bioassay indicate that benazolin functions as an auxin, but is much less active than naturally occurring indole-3-acetic acid.

Type
Research Article
Copyright
Copyright © 1983 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Brookes, R. F. and Leafe, E. L. 1963. Structure and plant growth-regulating activity of some 2-benzothiazolyloxyacetic acids and 2-oxobenzothiazolin-3-ylacetic acids. Nature (London) 198:589590.Google Scholar
2. Galston, A. W. and Hand, M. E. 1949. Studies on the physiology of light action. I. Auxin and the light inhibition of growth. Am. J. Bot. 36:8594.Google Scholar
3. Larsen, P. 1955. Growth substances in higher plants. Pages 565625 in Paech, K. and Tracey, M. V. (eds.), Vol. III, Moderne Methoden der Pflanzenanalyse. Springer-Verlag, Berlin.Google Scholar
4. Leopold, A. C. 1955. Auxins and Plant Growth. Univ. of Calif. Press, Berkeley. 354.Google Scholar
5. Lewis, D. K. 1969. Residues using 14C-benazolin, with special reference to its persistence on foliage under glasshouse conditions. J. Sci. Food Agr. 20:185190.Google Scholar
6. Lush, G. B., Leafe, E. L., and Mayes, A. J. 1965. Field experience with 4-chloro-2-oxobenzothiazolin-3-yl-acetic acid. Proc. Symp. New Herbicides, Paris. 2:201209.Google Scholar
7. Molberg, E. S. and Ashraff, M. A. 1971. Benazolin for selective weed control in wheat and oilseed crops. Can. J. Plant Sci. 51: 371376.Google Scholar
8. Morré, D. J. and Key, J. L. 1967. Auxins. Pages 575593 in Wilt, F. H. and Wessels, N. K., eds. Methods in Developmental Biology. T. Y. Crowell Co., New York.Google Scholar
9. Mühlethaler, P. 1968. Benazolin for the control of annual weeds in autumn sown rape seed. Proc. Brit. Weed Contr. Conf. 9:12051208.Google Scholar
10. Thimann, K. V. and Schneider, C. L. 1939. The relative activities of different auxins. Am. J. Bot. 26:328333.Google Scholar
11. Walker, R. H., Jolley, E. R., McGuire, J. A., and Murray, D. S. 1982. Benazolin and admixtures for common cocklebur (Xanthium pensylvanicum) and prickly sida (Sida spinosa) control in soybeans (Glycine max). Weed Sci. 30:5053.Google Scholar