Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T06:52:45.720Z Has data issue: false hasContentIssue false

Applications of Molecular Biology in Weed Science

Published online by Cambridge University Press:  12 June 2017

William E. Dyer*
Affiliation:
Plant and Soil Sci. Dep., Montana State Univ., Bozeman, MT 59717

Abstract

Rapid strides are being made in understanding the fundamental regulation of plant growth, development, and responses to the environment due to recent advances in molecular biology. Current questions in weed science such as herbicide mechanisms of action, biodegradation, and mechanisms of weed resistance are equally approachable using such methodology. Efforts to introduce herbicide resistance into agronomically important crops are possible because of successful isolation and transfer of genes. Investigations of weed survival and competitive strategies based on developmental processes, such as seed dormancy, are currently underway using techniques designed to monitor and characterize differential gene expression. Molecular methodology also plays a key role in taxonomic studies of weed populations using restriction fragment length polymorphism (RFLP) mapping. The future potential for these and other techniques such as nucleic acid hybridization, polymerase chain reaction (PCR), gene transfer, and the use of transgenic plants is described.

Type
Special Topics
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K., eds. 1988. Chapter 5 in Current Protocols in Molecular Biology. John Wiley and Sons, New York.Google Scholar
2. Aviv, H. and Leder, P. 1972. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc. Nat. Acad. Sci. U.S.A. 69:14081412.Google Scholar
3. Badley, J. E., Bishop, G. A., St. John, T., and Frelinger, J. A. 1988. A simple, rapid method for the purification of poly A+ RNA. BioTechniques 6:114116.Google ScholarPubMed
4. Benfey, P. N. and Chua, N.-H. 1989. Regulated genes in transgenic plants. Science 244:174181.Google Scholar
5. Burnette, W. N. 1981. “Western blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112:195203.Google Scholar
6. Cavallito, C. J. and Bailey, J. H. 1949. An antibacterial principle from Centaurea maculosa . J. Bacteriol. 57:207212.Google Scholar
7. Chirgwin, J. M., Przbyla, A. E., MacDonald, R. J., and Rutter, W. J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:52945299.Google Scholar
8. Comai, L. and Stalker, D. 1986. Mechanism of action of herbicides and their molecular manipulation. Oxf. Surv. Plant Mol. Cell Biol. 3:166195.Google Scholar
9. Crawford, D. J. 1990. Plant Molecular Systematics: Macromolecular Approaches. John Wiley and Sons, New York. 388 pp.Google Scholar
10. Davis, L. G., Dibner, M. D., and Battey, J. F. 1986. Basic Methods in Molecular Biology. Elsevier, New York. 388 pp.Google Scholar
11. Deutscher, M. P., ed. 1990. Guide to Protein Purification. Meth. Enzymol. Vol. 182. Academic Press, San Diego. 689 pp.Google Scholar
12. Duguid, J. R., Rohwer, R. G., and Seed, B. 1988. Isolation of cDNAs of scrapie-modulated RNAs by subtractive hybridization of a cDNA library. Proc. Nat. Acad. Sci. U.S.A. 85:57385742.Google Scholar
13. Dunbar, B. S. 1987. Two-dimensional Gel Electrophoresis and Immunological Techniques. Plenum Press, New York. 372 pp.Google Scholar
14. Dyer, W. E. 1991. Differential gene expression during imbibition of dormant and nondormant wild oat (Avena fatua L.) embryos. Abstr. Weed Sci. Soc. Am. 31:157.Google Scholar
15. Dyer, W. E., Henstrand, J. H., Handa, A. K., and Herrmann, K. M. 1989. Wounding induces the first enzyme of the shikimate pathway in Solanaceae . Proc. Nat. Acad. Sci. U.S.A. 86:73707373.Google Scholar
16. Dyer, W. E., Weaver, L. M., Zhao, J., Kuhn, D. N., Weller, S. C., and Herrmann, K. M. 1990. A cDNA encoding 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Solanum tuberosum . J. Biol. Chem. 265:16081614.Google Scholar
17. Erlich, H. A. 1989. PCR Technology: Principles and Applications for DNA Amplification. Stockton Press, New York. 246 pp.Google Scholar
18. Gressel, J. 1986. Modes and genetics of herbicide resistance in plants. Pages 5474 in Pesticide Resistance: Strategies and Tactics for Management. National Academy Press, Washington, DC.Google Scholar
19. Horsch, R. B., Fry, J. E., Hoffman, N. L., Eichholtz, D., Rogers, S. G., and Fraley, R. T. 1985. A simple and general method for transferring genes into plants. Science 227:12291231.Google Scholar
20. Hatzios, K. K. 1987. Biotechnology applications in weed management: Now and in the future. Adv. Agron. 41:325375.CrossRefGoogle Scholar
21. Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J. 1990. PCR Protocols: A Guide to Methods and Applications. Academic Press, New York. 278 pp.Google Scholar
22. Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C. 1987. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:7073.Google Scholar
23. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680685.Google Scholar
24. Langone, J. J. and Vunakis, H. V., eds. 1986. Immunochemical Techniques (Part I: Hybridoma Technology and Monoclonal Antibodies). Meth. Enzymol. Vol. 121. Academic Press, San Diego. 941 pp.Google Scholar
25. Lathe, R. 1985. Synthetic oligonucleotide probes deduced from amino acid sequence data: Theoretical and practical considerations. J. Mol. Biol. 183:112.Google Scholar
26. LeBaron, H. M., Momma, R. O., Honeycutt, R. C., and Duesing, J. H., eds. 1987. Biotechnology in Agricultural Chemistry. ACS Symp. Ser. 334. Am. Chem. Soc., Washington, DC. 367 pp.Google Scholar
27. LeGendre, N. 1990. Immobilon-P transfer membrane: Applications and utility in protein biochemical analysis. BioTechniques 9:788805.Google Scholar
28. Mazur, B. J. and Falco, S. C. 1989. The development of herbicide resistant crops. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:441470.Google Scholar
29. Mierendorf, R. C., Percy, C., and Young, R. A. 1987. Gene isolation by screening lambda gt 11 libraries with antibodies. Meth. Enzymol. 152:458468.Google Scholar
30. Nissen, S. J. and Masters, R. A. 1991. Evaluation of genetic diversity in Euphorbia esula using chloroplast DNA restriction fragment length polymorphisms. Abstr. Weed Sci. Soc. Am. 31:135.Google Scholar
31. O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:40074021.Google Scholar
32. Pelham, H.R.B. and Jackson, R. J. 1976. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. 67:247256.CrossRefGoogle ScholarPubMed
33. Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Lab., Cold Spring Harbor, New York. 1659 pp.Google Scholar
34. Sanger, F., Nicklen, S., and Coulson, A. R. 1977. DNA sequencing with chain terminating inhibitors. Proc. Nat. Acad. Sci. U.S.A. 74:54365467.Google Scholar
35. Short, J. M., Fernandez, J. M., Sorge, J. A., and Huse, W. D. 1988. λ ZAP: a bacteriophage λ expression vector with in vivo excision properties. Nucl. Acids Res. 16:75837600.Google Scholar
36. Sommer, H., Beltran, J., Huijser, P., Pape, H., Lonnig, W., Saedler, H., and Schwarz-Sommer, Z. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9:605613.Google Scholar
37. Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503517.Google Scholar
38. Viera, J. and Messing, J. 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259268.Google Scholar
39. Weising, K., Schell, J., and Kahl, G. 1988. Foreign genes in plants: Transfer, structure, expression, and applications. Annu. Rev. Genet. 22:421477.Google Scholar
40. Wilchek, M., Miron, T., and Kohn, J. 1984. Affinity chromatography. Meth. Enzymol. 104:355.Google Scholar