Hostname: page-component-669899f699-8p65j Total loading time: 0 Render date: 2025-05-05T06:01:07.042Z Has data issue: false hasContentIssue false

Alleviative effect of iron chlorin e6 on isoproturon phytotoxicity to wheat

Published online by Cambridge University Press:  09 October 2024

Rensi Liu
Affiliation:
Master-postgraduate, Nanjing Agricultural University, College of Plant Protection, Nanjing, Jiangsu, China
Haitao Gao
Affiliation:
Doctor-postgraduate, Nanjing Agricultural University, College of Plant Protection, Nanjing, Jiangsu, China
Yingchun Wang
Affiliation:
Bachelor-undergraduate, Nanjing Better Bioengineering Co., Ltd., Nanjing, Jiangsu, China
Shaoqi Liang
Affiliation:
Master-postgraduate, Nanjing Agricultural University, College of Plant Protection, Nanjing, Jiangsu, China
Jiaxing Yu
Affiliation:
Master-postgraduate, Nanjing Agricultural University, College of Plant Protection, Nanjing, Jiangsu, China
Zhike Feng
Affiliation:
Professor, Nanjing Agricultural University, College of Plant Protection, Nanjing, Jiangsu, China
Liyao Dong*
Affiliation:
Professor, Nanjing Agricultural University, College of Plant Protection, Nanjing, Jiangsu, China
*
Corresponding author: Liyao Dong; Email: [email protected]

Abstract

Isoproturon phytotoxicity to wheat (Triticum aestivum L.) is a worry for many farmers in chemical control of weeds in wheat fields, especially in subzero weather conditions. Iron chlorin e6 (ICe6), a new plant growth regulator, has been reported to enhance crop stress resistance to alleviate damage caused by stress; however, it is not clear whether ICe6 has an alleviative effect on isoproturon phytotoxicity to wheat. We determined the alleviative effect of ICe6 on isoproturon phytotoxicity to wheat, and 0.018 g ai ha−1 was the optimal dose. Meanwhile, we also studied the photosynthetic pigment content, photosynthetic parameters, oxidative stress indicators, and antioxidant enzyme activity of wheat treated with the three different treatments. We found that the photosynthetic pigment content, antioxidant enzyme activity, and photosynthesis of wheat damaged by isoproturon were significantly lower than those of the control, and the hydrogen peroxide (H2O2) and malondialdehyde (MDA) content increased. These results indicate that isoproturon stress significantly weakened the photosynthetic and antioxidant capacity of wheat. The photosynthetic pigment content, photosynthetic parameters (excluding intercellular CO2 concentration), and antioxidant enzyme activity of isoproturon+ICe6– treated wheat were significantly higher than those of isoproturon-treated wheat. The H2O2 and MDA content was significantly lower than that of isoproturon-treated wheat. These results indicate that ICe6 treatment maintained the photosynthetic pigment content of wheat and relatively improved photosynthetic capacity, allowing photosynthesis to proceed normally. ICe6 treatment also limits the decrease in antioxidant enzyme activity, effectively clearing excess reactive oxygen species and ultimately alleviating membrane lipid peroxidation damage. In summary, ICe6 not only enhances stress resistance and increases yield in crops such as soybean [Glycine max (L.) Merr.] and canola (Brassica napus L.), but also has an alleviating effect on the isoproturon phytotoxicity to wheat, which is manifested by the improvement of photosynthetic and antioxidant abilities, ultimately leading to an increase in wheat shoot height and shoot fresh weight.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Weed Science Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

The first two authors contributed equally to this work.

Associate Editor: Mithila Jugulam, Kansas State University

References

Alscher, RG, Erturk, N, Heath, LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:13311341 CrossRefGoogle ScholarPubMed
Baillard, V, Sulmon, C, Bittebiere, A-K, Mony, C, Couée, I, Gouesbet, G, Delignette-Muller, ML, Devin, S, Billoir, E (2020) Effect of interspecific competition on species sensitivity distribution models: analysis of plant responses to chemical stress. Ecotoxicol Environ Saf 200:110722 CrossRefGoogle ScholarPubMed
Beauchamp, C, Fridovich, I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276287 CrossRefGoogle Scholar
Cakmak, I, Marschner, H (1992) Magnesium-Deficiency and High Light-Intensity Enhance Activities of Superoxide-Dismutase, Ascorbate Peroxidase, and Glutathione-Reductase in Bean-Leaves. Plant Physiol 98:12221227 CrossRefGoogle ScholarPubMed
Cao, C-F, Li, X-J, Yu, L-R, Shi, X-K, Chen, L-M, Yu, B-J (2018) Foliar 2,3-dihydroporphyrin iron (III) spray confers ameliorative antioxidation, ion redistribution and seed traits of salt-stressed soybean plants. J Soil Sci Plant Nutr 18(4), 10.4067/S0718-95162018005003001 Google Scholar
Cao, C-F, Yu, B-J, Zhao, X-F, Wei, P-P, Song, J-M, Chen, L-M, Wang, M (2016) Ameliorative effects of foliar 2,3-dihydroporphyrin iron (III) spray on seedling growth and seed traits of salt-stressed rapeseed plants. Agron J 108:14551462 CrossRefGoogle Scholar
Chagas, RM, Silveira, JAG, Ribeiro, RV, Vitorello, VA, Carrer, H (2008) Photochemical damage and comparative performance of superoxide dismutase and ascorbate peroxidase in sugarcane leaves exposed to paraquat-induced oxidative stress. Pestic Biochem Physiol 90:181188 CrossRefGoogle Scholar
de Castro Marcato, AC, de Souza, CP, Fontanetti, CS (2017) Herbicide 2,4-D: a review of toxicity on non-target organisms. Water Air Soil Pollut 228:120 CrossRefGoogle Scholar
Deng Hailing, YX, Zhang, Q, Qiang, S, Song, X (2022) Screening of isoproturon- resistant and mesosulfuron-methyl-resistant wheat germplasm resources. J Weed Sci 40:2234. ChineseGoogle Scholar
Foyer, CH, Noctor, G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861905 CrossRefGoogle ScholarPubMed
Fuerst, EP, Norman, MA (2017) Interactions of herbicides with photosynthetic electron transport. Weed Sci 39:458464 CrossRefGoogle Scholar
Gill, SS, Tuteja, N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909930 CrossRefGoogle ScholarPubMed
Gu, Y, Li, G, Sun, Y, Luo, W, Liu, X, Zhang, W, Qi, C, Zhao, Y, Tang, K, Zhang, Y, Shao, L, Xiong, Y, Si, C, Zhao, C (2017) The effects of global dimming on the wheat crop grown in the Yangtze Basin of China simulated by SUCROS_LL, a process-based model. Ecol Modell 350:4254 CrossRefGoogle Scholar
Gutierrez-Gamboa, G, Marin-San Roman, S, Jofre, V, Rubio-Breton, P, Perez-Alvarez, EP, Garde-Cerdan, T (2018) Effects on chlorophyll and carotenoid contents in different grape varieties (Vitis vinifera L.) after nitrogen and elicitor foliar applications to the vineyard. Food Chem 269:380386 CrossRefGoogle Scholar
Hassan, NM, Nemat Alla, MM (2022) Attenuating the toxicity of isoproturon to maize by priming in ascorbate, glutathione or thiourea. J Nat Pestic Res 2:100014 CrossRefGoogle Scholar
He, R, He, M, Xu, H, Zhang, K, Zhang, M, Ren, D, Li, Z, Zhou, Y, Duan, L (2023) A novel plant growth regulator brazide improved maize water productivity in the arid region of northwest China. Agric Water Manag 287:108441 CrossRefGoogle Scholar
Huang, Y, Wang, F, Su, Y, Yu, M, Shen, A, He, X, Gao, J (2022) Risk assessment of waterlogging in major winter wheat-producing areas in China in the last 20 years. Sustainability 14:14072 CrossRefGoogle Scholar
Jiang, M, Zhang, J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:24012410 CrossRefGoogle ScholarPubMed
Kamat, JP, Boloor, KK, Devasagayam, TP (2000) Chlorophyllin as an effective antioxidant against membrane damage in vitro and ex vivo. Biochim Biophys Acta 1487:113127 CrossRefGoogle Scholar
Katz, JJ, Norris, JR, Shipman, LL, Thurnauer, MC, Wasielewski, MR (1978) Chlorophyll function in the photosynthetic reaction center. Annu Rev Biophys Bioeng 7:393434 CrossRefGoogle ScholarPubMed
Kniss, AR (2017) Long-term trends in the intensity and relative toxicity of herbicide use. Nat Commun 8:14865 CrossRefGoogle ScholarPubMed
Kwak, SS, Kim, SK, Lee, MS, Jung, KH, Park, IH, Liu, JR (1995) Acidic peroxidases from suspension-cultures of sweet-potato. Phytochemistry 39:981984 CrossRefGoogle Scholar
Li, J-T, Qiu, Z-B, Zhang, X-W, Wang, L-S (2010) Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol Plant 33:835842 CrossRefGoogle Scholar
Li, X, Cai, J, Liu, F, Dai, T, Cao, W, Jiang, D (2014) Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiol Biochem 82:3443 CrossRefGoogle ScholarPubMed
Liang, L, Lu, YL, Yang, H (2012) Toxicology of isoproturon to the food crop wheat as affected by salicylic acid. Environ Sci Pollut Res 19:20442054 CrossRefGoogle Scholar
Liu, D, Wu, L, Naeem, MS, Liu, H, Deng, X, Xu, L, Zhang, F, Zhou, W (2013) 5-Aminolevulinic acid enhances photosynthetic gas exchange, chlorophyll fluorescence and antioxidant system in oilseed rape under drought stress. Acta Physiol Plant 35:27472759 CrossRefGoogle Scholar
Luo, X, Yang, Y, Lin, X, Xiao, J (2023) Deciphering spike architecture formation towards yield improvement in wheat. J Genet Genomics 50:835845 CrossRefGoogle ScholarPubMed
Ma, LY, Zhang, SH, Zhang, JJ, Zhang, AP, Li, N, Wang, XQ, Yu, QQ, Yang, H (2018) Jasmonic acids facilitate the degradation and detoxification of herbicide isoproturon residues in wheat crops (Triticum aestivum). Chem Res Toxicol 31:752761 CrossRefGoogle ScholarPubMed
Meng Dandan, FJ, Guo, S, Ma, X, Chen, Q, Peng, Z, Li, T (2019) Early diagnosis of isproturon phytotoxicity on wheat seedlings based on physiological indices. Plant Prot 45:186189, 213. ChineseGoogle Scholar
Mittler, R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405410 CrossRefGoogle ScholarPubMed
Nakka, S, Jugulam, M, Peterson, D, Asif, M (2019) Herbicide resistance: development of wheat production systems and current status of resistant weeds in wheat cropping systems. Crop J 7:750760 CrossRefGoogle Scholar
Nemat Alla, MM, Hassan, NM (2014) Alleviation of isoproturon toxicity to wheat by exogenous application of glutathione. Pestic Biochem Physiol 112:5662 CrossRefGoogle ScholarPubMed
Nemat Alla, MM, Hassan, NM, El-Bastawisy, ZM (2008) Changes in antioxidants and kinetics of glutathione-S-transferase of maize in response to isoproturon treatment. Plant Biosyst 142:516 CrossRefGoogle Scholar
Rademacher, W (2015) Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul 34:845872 CrossRefGoogle Scholar
Rutherford, AW, Krieger-Liszkay, A (2001) Herbicide-induced oxidative stress in photosystem II. Trends Biochem Sci 26:648653 CrossRefGoogle ScholarPubMed
Shaner, DL (2004) Herbicide safety relative to common targets in plants and mammals. Pest Manag Sci 60:1724 CrossRefGoogle ScholarPubMed
Sorensen, SR, Ronen, Z, Aamand, J (2001) Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon. Appl Environ Microbiol 67:54035409 CrossRefGoogle ScholarPubMed
Szwed, M, Mitrus, J, Wiczkowski, W, Dębski, H, Horbowicz, M (2020) If phenolic compounds in the soil with buckwheat residues affect the emergence and growth of weed seedlings? Acta Physiol Plant 42:154 CrossRefGoogle Scholar
Varshney, S, Hayat, S, Alyemeni, MN, Ahmad, A (2012) Effects of herbicide applications in wheat fields: is phytohormones application a remedy? Plant Signal Behav 7:570575 CrossRefGoogle ScholarPubMed
Wang, S-q, Zhao, H-h, Zhao, L-m, Gu, C-m, Na, Y-g, Xie, B, Cheng, S-h, Pan, G-j (2020) Application of brassinolide alleviates cold stress at the booting stage of rice. J Integr Agric 19:975987 CrossRefGoogle Scholar
Wang, ZB, Wang, H, Li, J, Yu, JX, Lin, HY, Dong, LY (2022) Comparison of quintrione and quinclorac on mechanism of action. Pestic Biochem Physiol 181:105007 CrossRefGoogle ScholarPubMed
Xiao, L, Asseng, S, Wang, X, Xia, J, Zhang, P, Liu, L, Tang, L, Cao, W, Zhu, Y, Liu, B (2022) Simulating the effects of low-temperature stress on wheat biomass growth and yield. Agric For Meteorol 326:109191 CrossRefGoogle Scholar
Yan, F, Wei, H, Ding, Y, Li, W, Liu, Z, Chen, L, Tang, S, Ding, C, Jiang, Y, Li, G (2021a) Melatonin regulates antioxidant strategy in response to continuous salt stress in rice seedlings. Plant Physiol Biochem 165:239250 CrossRefGoogle ScholarPubMed
Yan, F, Zhang, J, Li, W, Ding, Y, Zhong, Q, Xu, X, Wei, H, Li, G (2021b) Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings. Plant Physiol Biochem 163:367375 CrossRefGoogle ScholarPubMed
Yin, XL, Jiang, L, Song, NH, Yang, H (2008) Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. J Agric Food Chem 56:48254831 CrossRefGoogle ScholarPubMed