Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-16T17:14:11.943Z Has data issue: false hasContentIssue false

Visual-field map in the transcallosal sending zone of area 17 in the cat

Published online by Cambridge University Press:  02 June 2009

B. R. Payne
Affiliation:
Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston

Abstract

The representation of the visual field in the part of area 17 containing neurons that project axons across the corpus callosum to the contralateral hemisphere was defined in the cat. Of 1424 sites sampled along 77 electrode tracks, 768 proved to be in the callosal sending zone, which was identified by retrograde transport of horseradish peroxidase that had been deposited in the opposite hemisphere. The results show that the callosal sending zone has a fairly constant width of between 3 and 4 mm at most levels in area 17. However, the representation of the contralateral field at the different elevations of the visual field is not equal in this zone. The zone represents positions within 4 deg of the midline at the 0-deg horizontal meridian, and positions out to 15-deg azimuths in the upper hemifield and out to positions of 25-deg azimuth in the lower hemifield. The shape of the representation is approximately mirror-symmetric about the horizontal meridian, although there is a greater extent in the lower hemifield, which can be accounted for by the greater range of elevations (>60 deg) represented there compared with the upper hemifield (-40 deg). The representation in the sending zone of one hemisphere matches that present in the area 17/18 transition zone, which receives the bulk of transcallosal projections, in the opposite hemisphere. The observations on the sending zone show that callosal connections of area 17 are concerned with a vertical hour-glass-shaped region of the visual field centered on the midline. The observations suggest that in addition to interactions between neurons concerned with positions immediately adjacent to the midline, there are positions, especially high and low in the visual field, where interactions can occur between neurons that have receptive fields displaced some distance from the midline.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albus, K. (1975). A quantitative study of the projection area of the central and paracentral visual field in area 17 of the cat, I: Precision of the topography. Experimental Brain Research 24, 159179.CrossRefGoogle ScholarPubMed
Allman, J.M. (1979). Cited as a personal communication in Weyand and Swadlow (1980): see below for details.Google Scholar
Antonini, A., Berlucchi, G. & Lepore, F. (1983). Physiological organization of callosal connections of a visual lateral suprasylvian cortical area in the cat. Journal of Neurophysiology 49, 902921.CrossRefGoogle ScholarPubMed
Antonini, A., di Stefano, M., Minciacchi, D. & Tassinari, G. (1985). Interhemispheric influences on area 19 of the cat. Experimental Brain Research 59, 171184.CrossRefGoogle Scholar
Barlow, H.B., Blakemore, C. & Pettigrew, J.D. (1967). The neural mechanisms of binocular depth discrimination. Journal of Physiology (London) 193, 327342.Google Scholar
Berlucchi, G. & Rizzolatti, G. (1968). Binocularly driven neurons in visual cortex of split-chiasm cats. Science 159, 308310.CrossRefGoogle ScholarPubMed
Berman, N. & Cynader, M. (1972). Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats. Journal of Physiology (London) 224, 363389.Google Scholar
Blakemore, C. (1969). Binocular depth discrimination and the nasotemporal division. Journal of Physiology (London) 205, 471497.Google Scholar
Blakemore, C. (1970a). The representation of three-dimensional visual space in the cat's striate cortex. Journal of Physiology (London) 209, 155178.Google Scholar
Blakemore, C. (1970b). Binocular depth perception and the optic chiasm. Vision Research 10, 4347.CrossRefGoogle ScholarPubMed
Blakemore, C., Diao, Y., Pu, M., Wang, Y. & Xiao, Y. (1983). Possible functions of the interhemispheric connections between visual cortical areas in the cat. Journal of Physiology (London) 337, 331349.Google Scholar
Choudhury, B.P., Whitteridge, D. & Wilson, M.E. (1965). The function of callosal connections of the visual cortex. Quarterly Journal of Experimental Physiology 50, 214219.CrossRefGoogle ScholarPubMed
Cooper, M.L. & Pettigrew, J.D. (1979). The decussation of the retinothalamic pathway in the cat, with a note on the major meridians of the cat's eye. Journal of Comparative Neurology 187, 285312.CrossRefGoogle ScholarPubMed
Cusick, C.G., Gould, H.J. & Kaas, J.H. (1984). Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus). Journal of Comparative Neurology 230, 311336.CrossRefGoogle ScholarPubMed
Cusick, C.G., Macavoy, M.G., & Kaas, J.H. (1985). Interhemispheric connections of cortical sensory areas in tree shrews. Journal of Comparative Neurology 235, 111128.CrossRefGoogle ScholarPubMed
Daniel, P.M. & Whitteridge, D. (1961). The representation of the visual field on the cerebral cortex in monkeys. Journal of Physiology (London) 159, 203221.Google Scholar
Doty, R.W. & Negrao, N. (1973). Forebrain commissures and vision. In Handbook of Sensory Physiology, Vol. VII/3B, ed. Jung, R., pp. 543582. New York: Springer.Google Scholar
Doty, R.W., Overman, W.H. & Negrao, N. (1980). Role of the fore-brain commissures in hemispheric specialization and memory in macaques. In Structure and Function of the Cerebral Commissures, ed. Steele-Russel, I., van Hof, M.W. & Berlucchi, G., pp. 333342. Baltimore, Maryland: University Park Press.Google Scholar
Dow, B.M., Vautin, R.G. & Bauer, R. (1985). The mapping of visual space onto foveal striate cortex in the macaque monkey. Journal of Neuroscience 5, 890902.CrossRefGoogle ScholarPubMed
Dreher, B. & Cottee, L.J. (1975). Visual receptive-field properties of cells in area 18 of cat's cerebral cortex before and after acute lesions in area 17. Journal of Neurophysiology 38, 735750.CrossRefGoogle ScholarPubMed
Dursteler, M.R., Blakemore, C. & Garey, L.J. (1979). Projections to the visual cortex in the golden hamster. Journal of Comparative Neurology 183, 185204.CrossRefGoogle Scholar
Ebner, F.F. & Myers, R.E. (1965). Distribution of corpus callosum and anterior commissure in cat and raccoon. Journal of Comparative Neurology 124, 353366.CrossRefGoogle Scholar
Espinoza, S.G. & Thomas, H.C. (1983). Retinotopic organization of striate and extrastriate visual cortex in the hooded rat. Brain Research 272, 137144.CrossRefGoogle ScholarPubMed
Eysel, U., Th Muche, T. & Worgotter, F. (1988). Lateral interactions at direction selective neurones in the cat demonstrated by local cortical inactivation. Journal of Physiology (London) 399, 657675.Google Scholar
Eysel, U., Th Worgotter, F. & Pape, H.C. (1987). Local cortical lesions abolish lateral inhibition of direction selective cells in cat visual cortex. Experimental Brain Research 68, 606612.CrossRefGoogle ScholarPubMed
Fisken, R.A., Garey, L.J. & Powell, T.P.S. (1975). The intrinsic, association, and commissural connections of the visual cortex. Philosophical Transactions of the Royal Society B (London) 272, 487536.Google Scholar
Gardner, J.C. & Cynader, M.S. (1987). Mechanisms for depth sensitivity along the vertical meridian of the visual field. Brain Research 413, 6074.CrossRefGoogle ScholarPubMed
Garey, L.J., Jones, E.G. & Powell, T.P.S. (1968). Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. Journal of Neurology, Neurosurgery, and Psychiatry 31, 135157.CrossRefGoogle ScholarPubMed
Gilbert, C. & Wiesel, T.N. (1979). Morphology and intracortical projections of functionally characterized neurons in the cat visual cortex. Nature 280, 120125.CrossRefGoogle ScholarPubMed
Gilbert, C. & Wiesel, T.N. (1983). Clustered intrinsic connections in cat visual cortex. Journal of Neuroscience 3, 11161133.CrossRefGoogle ScholarPubMed
Gould, H.J. (1984). Interhemispheric connections of the visual cortex in the grey squirrel (Sciurus carolinensis). Journal of Comparative Neurology 223, 259301.CrossRefGoogle ScholarPubMed
Gould, H.J., Weber, J.T. & Rieck, R.W. (1987). Interhemispheric connections in the visual cortex of the squirrel monkey (Saimiri sciureus). Journal of Comparative Neurology 256, 1428.CrossRefGoogle ScholarPubMed
Hall, W.C., Kaas, J.H., Killackey, H. & Diamond, I.T. (1971). Cortical visual areas in the grey squirrel (Sciurus carolinensis): a correlation between cortical evoked potential maps and architectonic subdivisions. Journal of Neurophysiology 34, 437452.CrossRefGoogle Scholar
Hammond, P. (1978). Inadequacy of nitrous oxide/oxygen mixtures for maintaining anesthesia in cats: satisfactory alternatives. Pain 5, 143151.CrossRefGoogle ScholarPubMed
Harvey, A.R. (1980). A physiological analysis of subcortical and commissural projections of areas 17 and 18 of the cat. Journal of Physiology (London) 302, 507534.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160, 106154.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1965). Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. Journal of Neurophysiology 28, 229289.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1967). Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. Journal of Neurophysiology 30, 15611573.CrossRefGoogle ScholarPubMed
Hughes, A. & Vaney, D.I. (1982). The organization of binocular cortex in the primary visual area of the rabbit. Journal of Comparative Neurology 204, 151164.CrossRefGoogle ScholarPubMed
Humphrey, A.L., Sur, M., Uhlrich, D.J. & Sherman, S.M. (1985). Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: projections to area 18, to the 17/18 border region, and to both areas 17 and 18. Journal of Comparative Neurology 233, 190212.CrossRefGoogle Scholar
Illing, R.-B. & Wassle, H. (1981). The retinal projection to the thalamus in the cat: a quantitative investigation and a comparison with the retinotectal pathway. Journal of Comparative Neurology 202, 265285.CrossRefGoogle Scholar
Innocenti, G.M. (1980). The primary visual pathway through the corpus callosum: morphological and functional aspects in the cat. Archives Italienne Biologie 118, 124188.Google ScholarPubMed
Innocenti, G.M. (1986). General organization of callosal connections in the cerebral cortex. In Cerebral Cortex, Vol. 5: Sensory-Motor Areas and Aspects of Cortical Connectivity, ed. Jones, E.G. & Peters, A., pp. 291353. New York and London: Plenum Press.Google Scholar
Jouandet, M.L., Garey, L.J. & Lipp, H.-P. (1984). Distribution of the cells of origin of the corpus callosum and anterior commissure in the marmoset monkey. Anatomy and Embryology 169, 4559.CrossRefGoogle ScholarPubMed
Jouandet, M.L., Lachat, J.-J. & Garey, L.J. (1985). Distribution of the neurons of origin of the great cerebral commissures in the cat. Anatomy and Embryology 171, 105120.CrossRefGoogle ScholarPubMed
Kaas, J.H., Hall, W.C., Killackey, H. & Diamond, I.T. (1972). Visual cortex of the tree shrew (Tupaia glis): architectonic subdivisions and representations of the visual field. Brain Research 42, 491496.CrossRefGoogle ScholarPubMed
Kennedy, H., Dehay, C. & Bullier, J. (1986). Organization of callosal connections of visual areas V1 and V2 in the macaque monkey. Journal of Comparative Neurology 247, 398415.CrossRefGoogle ScholarPubMed
Kennedy, H. & Dehay, C. (1988). Functional implications of the anatomical organization of the callosal projections of visual areas V1 and V2 in the macaque monkey. Behavioral Brain Research 29, 225236.CrossRefGoogle ScholarPubMed
Land, E.H., Hubel, D.H., Livingstone, M.S., Perry, S.H. & Burns, M.M. (1983). Colour generating mechanisms across the corpus callosum. Nature 303, 616618.CrossRefGoogle Scholar
Lepore, F. & Guillemot, J.-P. (1982). Visual receptive field properties of cells innervated through the corpus callosum in the cat. Experimental Brain Research 46, 413424.CrossRefGoogle ScholarPubMed
LeVay, S. & Voigt, T. (1988). Ocular dominance and disparity coding in cat visual cortex. Visual Neuroscience 1, 395414.CrossRefGoogle ScholarPubMed
Martin, K.A.C. (1988). From single units to simple circuits in the cerebral cortex. Quarterly Journal of Experimental Physiology 73, 637702.CrossRefGoogle Scholar
Martin, K.A.C. & Whitteridge, D. (1984). Form, function and intra-cortical projections of spiny neurones in the striate visual cortex of the cat. Journal of Physiology (London) 353, 463504.Google Scholar
Marzi, C.A., Antonini, A., di Stefano, M. & Legg, C.R. (1982). The contribution of the corpus callosum to receptive fields in the lateral suprasylvian visual areas of the cat. Behavioral Brain Research 4, 155176.CrossRefGoogle ScholarPubMed
Mesulam, M.M. (1978). Tetramethyl benzidine for horseradish-peroxidase neurohistochemistry: a noncarcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. Journal of Histochemistry and Cytochemistry 26, 393414.CrossRefGoogle ScholarPubMed
Miller, M.W. & Vogt, B. (1984). Heterotopic and homotopic callosal connections in rat visual cortex. Brain Research 297, 7589.CrossRefGoogle ScholarPubMed
Mitchell, D.E. & Blakemore, C. (1970). Binocular depth perception and the corpus callosum. Vision Research 10, 4954.CrossRefGoogle ScholarPubMed
Nelson, J.I. & Frost, B.J. (1978). Orientation-selective inhibition from beyond the classic visual receptive field. Brain Research 139, 359365.CrossRefGoogle ScholarPubMed
Nikara, T., Bishop, P.O. & Pettigrew, J.D. (1968). Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Experimental Brain Research 6, 353372.CrossRefGoogle ScholarPubMed
Olavarria, J. & van Sluyters, R.C. (1983). Widespread callosal connections in infragranular visual cortex of the rat. Brain Research 279, 233237.CrossRefGoogle ScholarPubMed
Olucha, F., Martinez-Garcia, F. & Lopez-Garcia, C. (1985). A new stabilizing agent for the tetramethylbenzidine (TMB) reaction product in the histochemical detection of horseradish peroxidase (HRP). Journal of Neuroscience Methods 13, 131138.CrossRefGoogle ScholarPubMed
Payne, B.R. (1986). Role of callosal cells in the functional organization of cat striate cortex. In Two Hemispheres—One Brain: Functions of the Corpus Callosum, ed. Lepore, F., Ptito, M. & Jasper, H.H., pp. 231254. New York: Alan R. Liss.Google Scholar
Payne, B.R. (1990a). The representation of the ipsilateral visual field in the transition zone between areas 17 and 18 of the cat's cerebral cortex. Visual Neuroscience 4, 445474.CrossRefGoogle ScholarPubMed
Payne, B.R. (1990b). The function of the corpus callosum in the representation of the visual field in cat visual cortex. Visual Neuroscience 5, 205211.CrossRefGoogle ScholarPubMed
Payne, B.R., Pearson, H.E. & Berman, N. (1984). Role of the corpus callosum in the functional organization of cat striate cortex. Journal of Neurophysiology 52, 570594.CrossRefGoogle ScholarPubMed
Payne, B.R. & Peters, A. (1989). Cytochrome oxidase patches and Meynert cells in monkey visual cortex. Neuroscience 28, 353363.CrossRefGoogle ScholarPubMed
Payne, B.R. & Siwek, D.F. (1990). Receptive-field properties of neurons at the confluence of cerebral cortical areas 17, 18, 20a and 20b in the cat. Visual Neuroscience 4, 475479.CrossRefGoogle Scholar
Payne, B.R. & Siwek, D.F. (1991a). The visual-field map in the corpus callosum of the cat. Cerebral Cortex 1 (in press).CrossRefGoogle ScholarPubMed
Payne, B.R. & Siwek, D.F. (1991b). Visual field map in the callosal recipient zone at the border between areas 17 and 18 in the cat. Visual Neuroscience 7, 223238.Google ScholarPubMed
Payne, B.R., Siwek, D.F. & Lomber, S.G. (1991). Complex transcallosal interactions in visual cortex. Visual Neuroscience 6, 283289.CrossRefGoogle ScholarPubMed
Peters, A., Payne, B.R. & Josephson, K. (1990). Transcallosal nonpyramidal cells projection from visual cortex in the cat. Journal of Comparative Neurology 302, 124142.CrossRefGoogle ScholarPubMed
Pettigrew, J.D., Cooper, M.L. & Blasdel, G.G. (1979). Improved use of tapetal reflection for eye-position monitoring. Investigative Ophthalmology and Visual Science 18, 490495.Google ScholarPubMed
Pritzel, M., Kretz, R. & Rager, G. (1988). Callosal projections between areas 17 in the adult tree shrew (Tupaia belangeri). Experimental Brain Research 72, 481493.CrossRefGoogle ScholarPubMed
Rhoades, R.W. & Dellacroce, D.D. (1980). Visual callosal connections in the golden hamster. Brain Research 190, 248254.CrossRefGoogle ScholarPubMed
Rizzolatti, G. & Camarda, R. (1977). Influence of the presentation of remote visual stimuli on the responses of cat area 17 and lateral suprasylvian area. Experimental Brain Research 29, 107122.CrossRefGoogle ScholarPubMed
Sanderson, K.J. (1971). The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. Journal of Comparative Neurology 143, 101118.CrossRefGoogle Scholar
Segraves, M.A. & Rosenquist, A.C. (1982). The distribution of the cells of origin of callosal projections in cat visual cortex. Journal of Neuroscience 2, 10791089.CrossRefGoogle ScholarPubMed
Sesma, M.A., Casagrande, V.A. & Kaas, J.H. (1984). Cortical connections of area 17 in tree shrews. Journal of Comparative Neurology 230, 337351.CrossRefGoogle ScholarPubMed
Shatz, C.J. (1977a). Abnormal interhemispheric connections in the visual system of Boston Siamese cats: a physiological study. Journal of Comparative Neurology 171, 229246.CrossRefGoogle Scholar
Shatz, C.J. (1977b). Anatomy of interhemispheric connections in the visual system of Boston Siamese and ordinary cats. Journal of Comparative Neurology 173, 497518.CrossRefGoogle ScholarPubMed
Shoumura, K. (1979). The laminar and size distribution of commissural efferent neurons in the cat visual cortex. Archivum Histologicum Japonicum 42, 119128.CrossRefGoogle ScholarPubMed
Shoumura, K. (1981). Further studies on the size specificity of commissural projecting neurons of layer III in areas 17, 18, 19, and the lateral suprasylvian area of the cat's visual cortex. Archivum Histologicum Japonicum 44, 5169.CrossRefGoogle Scholar
Spatz, W.B. & Kunz, B. (1984). Area 17 of anthropoid primates does participate in visual callosal connections. Neuroscience Letters 48, 4953.CrossRefGoogle ScholarPubMed
Swadlow, H.A. (1977). Relationship of the corpus callosum to visual areas I and II of the awake rabbit. Experimental Neurology 57, 516531.CrossRefGoogle Scholar
Swadlow, H.A., Weyand, T.G. & Waxman, S.G. (1978). The cells of origin of the corpus callosum in rabbit visual cortex. Brain Research 156, 129134.CrossRefGoogle ScholarPubMed
Terao, N., Inatomi, A. & Maeda, T. (1982). Anatomical evidence for the overlapped distribution of ipsilaterally and contralaterally projecting ganglion cells to the lateral geniculate nucleus of the cat. Investigative Ophthalmology and Visual Science 23, 796798.Google Scholar
Tiao, Y.-C. & Blakemore, C. (1976). Functional organization in the visual cortex of the golden hamster. Journal of Comparative Neurology 168, 459482.Google ScholarPubMed
Tigges, J., Tigges, M., Anschel, S., Cross, N.A., Ledbetter, W.D. & McBride, R.L. (1981). Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkeys (Saimiri). Journal of Comparative Neurology 202, 539560.CrossRefGoogle Scholar
Toyama, K. & Matsunami, K. (1976). Convergence of specific visual and commissural impulses upon inhibitory interneurones in cat's visual cortex. Neuroscience 1, 107112.CrossRefGoogle Scholar
Toyama, K., Matsunami, K., Ohno, T. & Tokashiki, S. (1974). An intracellular study of neuronal organization in the visual cortex. Experimental Brain Research 21, 4566.CrossRefGoogle ScholarPubMed
Ts'o, D.Y., Gilbert, C.D. & Wiesel, T.N. (1986). Relationships between horizontal interactions and functional architecture as revealed by cross-correlation analysis. Journal of Neuroscience 6, 11601170.CrossRefGoogle ScholarPubMed
Tusa, R.J., Palmer, L.A. & Rosenquist, A.C. (1978). The retinotopic organization of area 17 (striate cortex) in the cat. Journal of Comparative Neurology 177, 213236.CrossRefGoogle ScholarPubMed
Westheimer, G. & Mitchell, D.E. (1969). The sensory stimulus for disjunctive eye movements. Vision Research 9, 749755.CrossRefGoogle ScholarPubMed
Weyand, T.G. & Swadlow, H.A. (1980). Interhemispheric striate projections in the prosimian primate Galago senegaiensis. Brain, Behavior, and Evolution 17, 473477.CrossRefGoogle Scholar
Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome-oxidase histochemistry. Brain Research 171, 1128.CrossRefGoogle ScholarPubMed