Published online by Cambridge University Press: 02 August 2005
Neurones activated through the corpus callosum (CC) in the cat visual cortex are known to be almost entirely located at the 17/18 border. They are orientation selective and display receptive fields (RFs) distributed along the central vertical meridian of the visual field (“visual midline”). Most of these cells are binocular, and many of them are activated both from the contralateral eye through the CC, and from the ipsilateral eye via the direct retino-geniculo-cortical (GC) pathway. These two pathways do not carry exactly the same information, leading to interocular disparity between pairs of RFs along the visual midline. Recently, we have demonstrated that a few weeks of unilateral paralytic strabismus surgically induced at adulthood does not alter the cortical distribution of these units but leads to a loss of their orientation selectivity and an increase of their RF size, mainly toward the ipsilateral hemifield when transcallosally activated (Watroba et al., 2001). To investigate interocular disparity, here we compared these RF changes to those occurring in the same neurones when activated through the ipsilateral direct GC route. The 17/18 transition zone and the bordering medial region within A17 were distinguished, as they display different interhemispheric connectivity. In these strabismics, some changes were noticed, but were basically identical in both recording zones. Ocular dominance was not altered, nor was the spatial distribution of the RFs with respect to the visual midline, nor the amplitude of position disparity between pairs of RFs. On the other hand, strabismus induced a loss of orientation selectivity regardless of whether neurones were activated directly or through the CC. Both types of RFs also widened, but in opposite directions with respect to the visual midline. This led to changes in incidences of the different types of position disparity. The overlap between pairs of RFs also increased. Based on these differences, we suggest that the contribution of the CC to binocular vision along the midline in the adult might be modulated through several intrinsic cortical mechanisms.