Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T02:14:16.510Z Has data issue: false hasContentIssue false

Two different areas of the nucleus glomerulosus in the South American pufferfish, Colomesus asellus

Published online by Cambridge University Press:  17 June 2020

Matthias Schmidt*
Affiliation:
Institute of Zoology, University of Bonn, Bonn, Germany
*
*Matthias Schmidt, E-mail: [email protected]

Abstract

The nucleus glomerulosus (NG) in paracanthopterygian and acanthopterygian teleost fishes receives afferents from neurons of the nucleus corticalis (NC), whose dendrites extend to the layers, stratum fibrosum et griseum superficiale (SFGS) and stratum griseum centrale (SGC), of the tectum opticum. A re-examination in this study revealed, by means of tracer experiments using biotinylated dextran amine, a separation among both tectal layers, portions of the NC, and target areas in a laminated type of the NG in the South American pufferfish, Colomesus asellus. Neurons of the lateral part of the NC send their dendrites to the SFGS and project to an area located dorsolaterally and centrally in the NG. In contrast, dendrites from neurons of the medial part of the NC run to the SGC, and projections from these neurons terminate in the NG in an area extending from dorsomedial to ventrolateral in the outer portion. Therefore, these two areas in the NG receive input from different sources. The NG in the visual system of tetraodontids may be involved in higher cognitive functions requiring much energy, becoming apparent by its very high level of cytochrome c oxidase activity.

Type
Brief Communication
Copyright
© The Author(s), 2020. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, K. & Wullimann, M.F. (2002). Hypothalamic inferior lobe and lateral torus connections in a percomorph teleost, the red cichlid (Hemichromis lifalili). The Journal of Comparative Neurology 449, 4364.CrossRefGoogle Scholar
Braford, M.R. & Northcutt, R.G. (1983). Organization of the diencephalon and pretectum of the ray-finned fishes. In Fish Neurobiology: Higher Brain Areas and Functions, Vol. 2, ed. Davis, R.E. & Northcutt, R.G., pp. 117163. Ann Arbor, MI: University of Michigan Press.Google Scholar
Butler, A.B., Wullimann, M.F. & Northcutt, R.G. (1991). Comparative cytoarchitectonic analysis of some visual pretectal nuclei in teleosts. Brain, Behavior and Evolution 38, 92114.CrossRefGoogle ScholarPubMed
Cerdá-Reverter, J.M., Zanuy, S. & Muñoz-Cueto, J.A. (2001). Cytoarchitectonic study of the brain of a perciform species, the sea bass (Dicentrarchus labrax). II. The diencephalon. Journal of Morphology 247, 229251.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Demski, L.S. (1973). Feeding and aggressive behavior evoked by hypothalamic stimulation in a cichlid fish. Comparative Biochemistry and Physiology 44A, 685692.CrossRefGoogle Scholar
Demski, L.S. (1983). Behavioral effects of electrical stimulation of the brain. In Fish Neurobiology: Higher Brain Areas and Functions, Vol. 2, ed. Davis, R.E. & Northcutt, R.G., pp. 317359. Ann Arbor, MI: University of Michigan Press.Google Scholar
Demski, L.S. & Knigge, K.M. (1971). The telencephalon and hypothalamus of the bluegill (Lepomis macrochirus): Evoked feeding, aggressive and reproductive behavior with representative frontal sections. The Journal of Comparative Neurology 143, 116.CrossRefGoogle ScholarPubMed
Fernald, R.D. & Shelton, L.C. (1985). The organization of the diencephalon and the pretectum in the cichlid fish, Haplochromis burtoni. The Journal of Comparative Neurology 238, 202217.CrossRefGoogle ScholarPubMed
Gallagher, S.P. & Northmore, D.P.M. (2006). Responses of the teleostean nucleus isthmi to looming objects and other moving stimuli. Visual Neuroscience 23, 209219.CrossRefGoogle ScholarPubMed
Gómez-Segade, P. & Anadón, R. (1988). Specialization in the diencephalon of advanced teleosts. Journal of Morphology 197, 71103.CrossRefGoogle ScholarPubMed
Hagio, H., Sato, M. & Yamamoto, N. (2018). An ascending visual pathway to the dorsal telencephalon through the optic tectum and nucleus prethalamicus in the yellowfin goby Acanthogobius flavimanus (Temminck & Schlegel, 1845). The Journal of Comparative Neurology 526, 17331746.CrossRefGoogle Scholar
Ito, H., Butler, A.B. & Ebbesson, S.O.E. (1980). An ultrastructural study of the normal synaptic organization of the optic tectum and the degenerating tectal afferents from retina, telencephalon, and contralateral tectum in a teleost, Holocentrus rufus. The Journal of Comparative Neurology 191, 639659.CrossRefGoogle Scholar
Ito, H. & Kishida, R. (1975). Organization of the teleostean nucleus rotundus. Journal of Morphology 147, 89107.CrossRefGoogle ScholarPubMed
Ito, H. & Kishida, R. (1977). Synaptic organization of the nucleus rotundus in some teleosts. Journal of Morphology 151, 397417.CrossRefGoogle ScholarPubMed
Ito, H., Vanegas, H., Murakami, T. & Morita, Y. (1984). Diameters and terminal patterns of retinofugal axons in their target areas: An HRP study in two teleosts (Sebastiscus and Navodon). The Journal of Comparative Neurology 230, 179197.CrossRefGoogle Scholar
Kato, T., Yamada, Y. & Yamamoto, N. (2012). Ascending gustatory pathways to the telencephalon in goldfish. The Journal of Comparative Neurology 520, 24752499.CrossRefGoogle ScholarPubMed
Kinoshita, M., Ito, E., Urano, A., Ito, H. & Yamamoto, N. (2006). Periventricular efferent neurons in the optic tectum of rainbow trout. The Journal of Comparative Neurology 499, 546564.CrossRefGoogle ScholarPubMed
Morita, Y., Ito, H. & Masai, H. (1980). Central gustatory paths in the crucian carp, Carassius carassius. The Journal of Comparative Neurology 191, 119132.CrossRefGoogle ScholarPubMed
Morita, Y., Murakami, T. & Ito, H. (1983). Cytoarchitecture and topographic projections of the gustatory centers in a teleost, Carassius carassius. The Journal of Comparative Neurology 218, 378394.CrossRefGoogle Scholar
Mueller, T., Dong, Z., Berberoglu, M.A. & Guo, S. (2011). The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Research 1381, 95105.CrossRefGoogle Scholar
Murakami, T., Morita, Y. & Ito, H. (1986). Cytoarchitecture and fiber connections of the superficial pretectum in a teleost, Navodon modestus. Brain Research 373, 213221.CrossRefGoogle Scholar
Northcutt, R.G. & Wullimann, M.F. (1988). The visual system in teleost fishes: Morphological patterns and trends. In Sensory Biology of Aquatic Animals, ed. Atema, J., Fay, R.R., Popper, A.N. & Tavolga, W.N., pp. 515552. New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Ou, R. & Yamamoto, N. (2016). Forebrain atlas of Japanese jack mackerel Trachurus japonicus. Ichthyological Research 63, 405426.CrossRefGoogle Scholar
Rink, E. & Wullimann, M.F. (1998). Some forebrain connections of the gustatory system in the goldfish Carassius auratus visualized by separate DiI application to the hypothalamic inferior lobe and the torus lateralis. The Journal of Comparative Neurology 394, 152170.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Rowe, J.S. & Beauchamp, R.D. (1982). Visual responses of nucleus corticalis neurons in the perciform teleost, northern rock bass (Ambloplites rupestris rupestris). Brain Research 236, 205209.CrossRefGoogle Scholar
Sakamoto, N. & Ito, H. (1982). Fiber connections of the corpus glomerulosum in a teleost, Navodon modestus. The Journal of Comparative Neurology 205, 291298.CrossRefGoogle Scholar
Schwassmann, H.O. (1991). Aspects of retinotectal topography: Tectal magnification of specialized retinal areas and a possible center for binocular input. The Journal of Experimental Zoology Supplement 5, 117120.Google Scholar
Shimizu, M., Yamamoto, N., Yoshimoto, M. & Ito, H. (1999). Fiber connections of the inferior lobe in a percomorph teleost, Thamnaconus (Navodon) modestus. Brain, Behavior and Evolution 54, 127146.CrossRefGoogle Scholar
Springer, A.D. & Mednick, A.S. (1985). Retinofugal and retinopetal projections in the cichlid fish Astronotus ocellatus. The Journal of Comparative Neurology 236, 179196.CrossRefGoogle ScholarPubMed
Striedter, G.F. & Northcutt, R.G. (1989). Two distinct visual pathways through the superficial pretectum in a percomorph teleost. The Journal of Comparative Neurology 283, 342354.CrossRefGoogle Scholar
Tsutsui, H., Yamamoto, N., Ito, H. & Oka, Y. (2001). Encoding of different aspects of afferent activities by two types of cells in the corpus glomerulosum of a teleost brain. Journal of Neurophysiology 85, 11671177.CrossRefGoogle ScholarPubMed
Vanegas, H. & Ebbesson, S.O.E. (1976). Telencephalic projections in two teleost species. The Journal of Comparative Neurology 165, 181195.CrossRefGoogle ScholarPubMed
von Bartheld, C.S. & Meyer, D.L. (1987). Comparative neurology of the optic tectum in ray-finned fishes: Patterns of lamination formed by retinotectal projections. Brain Research 420, 277288.CrossRefGoogle ScholarPubMed
Wong-Riley, M.T.T. (1989). Cytochrome oxidase: An endogenous metabolic marker for neuronal activity. Trends in Neurosciences 12, 94101.CrossRefGoogle ScholarPubMed
Wullimann, M.F. (1988). The tertiary gustatory center in sunfishes is not nucleus glomerulosus. Neuroscience Letters 86, 610.CrossRefGoogle Scholar
Wullimann, M.F. & Meyer, D.L. (1990). Phylogeny of putative cholinergic visual pathways through the pretectum to the hypothalamus in teleost fish. Brain, Behavior and Evolution 36, 1429.CrossRefGoogle ScholarPubMed
Wullimann, M.F., Meyer, D.L. & Northcutt, R.G. (1991). The visually related posterior pretectal nucleus in the non-percomorph teleost Osteoglossum bicirrhosum projects to the hypothalamus: A DiI study. The Journal of Comparative Neurology 312, 415435.CrossRefGoogle ScholarPubMed
Xue, H.-G., Yamamoto, N., Yang, C.-Y., Kerem, G., Yoshimoto, M., Imura, K. & Ito, H. (2003). Fiber connections of the torus longitudinalis and optic tectum in holocentrid teleosts. The Journal of Comparative Neurology 462, 194212.CrossRefGoogle ScholarPubMed
Xue, H.-G., Yamamoto, N., Yoshimoto, M., Yang, C.-Y. & Ito, H. (2001). Fiber connections of the nucleus isthmi in the carp (Cyprinus carpio) and tilapia (Oreochromis niloticus). Brain, Behavior and Evolution 58, 185204.CrossRefGoogle Scholar
Yang, C.-Y., Xue, H.-G., Yoshimoto, M., Ito, H., Yamamoto, N. & Ozawa, H. (2007). Fiber connections of the corpus glomerulosum pars rotunda, with special reference to efferent projection pattern to the inferior lobe in a percomorph teleost, tilapia (Oreochromis niloticus). The Journal of Comparative Neurology 501, 582607.CrossRefGoogle Scholar
Yoshimoto, M., Albert, J.S., Sawai, N., Shimizu, M., Yamamoto, N. & Ito, H. (1998). Telencephalic ascending gustatory system in a cichlid fish, Oreochromis (Tilapia) niloticus. The Journal of Comparative Neurology 392, 209226.3.0.CO;2-6>CrossRefGoogle Scholar