Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T16:56:22.788Z Has data issue: false hasContentIssue false

Topography of long- and middle-wavelength sensitive cone opsin gene expression in human and Old World monkey retina

Published online by Cambridge University Press:  06 September 2006

MAUREEN NEITZ
Affiliation:
Department of Ophthalmology, and Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
SHAWN D. BALDING
Affiliation:
Department of Ophthalmology, and Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
CARRIE MCMAHON
Affiliation:
Department of Ophthalmology, and Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
STACY A. SJOBERG
Affiliation:
Department of Ophthalmology, and Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
JAY NEITZ
Affiliation:
Department of Ophthalmology, and Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin

Abstract

The topographical distributions of the relative ratio of long- (L) and middle- (M) wavelength sensitive cone opsin messenger RNA (mRNA) in human and baboon retinas were mapped using real-time polymerase chain reaction. The L:M mRNA ratio increased in a central-to-peripheral gradient in both species, being quite pronounced for humans.

Type
GENETICS
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahnelt, P.K., Kolb, H., & Pflug, R. (1987). Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina. The Journal of Comparative Neurology 255, 1834.CrossRefGoogle Scholar
Ahnelt, P.K., Fernández, E., Martinez, O., & Kübber-Heiss, A. (2000). Irregular S-cone mosaics in felid retinas. Spatial interactions with axonless horizontal cells, revealed by cross correlation. J. Optical Society of America A 17, 581588.Google Scholar
Bollinger, K., Bialozynski, C., Neitz, J., & Neitz, M. (2001). The importance of deleterious mutations of M pigment genes as a cause of color vision defects. Color Research and Application 26, S100S105.3.0.CO;2-I>CrossRefGoogle Scholar
Bollinger, K., Sjoberg, S., Neitz, M., & Neitz, J. (2004). Topographical cone photopigment gene expression in deutan-type red-green color vision defects. Vision Research 34, 134145.Google Scholar
Bowmaker, J.K., Parry, J.W.L., & Mollon, J.D. (2003). The arrangement of L and M cones in human and a primate retina. In Normal and Defective Colour Vision, eds. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 3950. Oxford University Press, New York.CrossRef
Bumsted, K. & Hendrickson, A. (1999). Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea. Journal of Comparative Neurology 403, 502516.3.0.CO;2-N>CrossRefGoogle Scholar
Bumsted, K., Jasoni, C., Szel, A., & Hendrickson, A. (1997). Spatial and temporal expressions of cone opsins during monkey retinal development. Journal of Comparative Neurology 378, 117134.3.0.CO;2-7>CrossRefGoogle Scholar
Carroll, J., Neitz, M., & Neitz, J. (2002). Estimates of L:M cone ratio from ERG flicker photometry and genetics. Journal of Vision 2, 531542.Google Scholar
Curcio, C.A., Allen, K.A., Sloan, K.R., Lerea, C.L., Hurley, J.B., Klock, I.B., & Milam, A.H. (1991). Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. The Journal of Comparative Neurology 312, 610624.CrossRefGoogle Scholar
Deeb, S.S., Diller, L.C., Williams, D.R., & Dacey, D.M. (2000). Interindividual and topographical variation of L:M cone ratios in monkey retinas. Journal of the Optical Society of America A 17, 538544.CrossRefGoogle Scholar
Diller, L., Packer, O.S., Verweij, J., McMahon, M.J., Williams, D.R., & Dacey, D.M. (2004). L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina. Journal of Neuroscience 24, 10791088.Google Scholar
Hagstrom, S.A., Neitz, J., & Neitz, M. (1998). Variations in cone populations for red-green color vision examined by analysis of mRNA. NeuroReport 9, 19631967.CrossRefGoogle Scholar
Hagstrom, S.A., Neitz, M., & Neitz, J. (2000). Cone pigment gene expression in individual photoreceptors and the chromatic topography of the retina. Journal of the Optical Society of America A 17, 527537.CrossRefGoogle Scholar
Hofer, H., Carroll, J., Neitz, J., Neitz, M., & Williams, D.R. (2005). Organization of the human trichromatic cone mosaic. Journal of Neuroscience 25, 96699679.CrossRefGoogle Scholar
LaVail, M.M., Rapaport, D.H., & Rakic, P. (1991). Cytogenesis in the monkey retina. Journal of Comparative Neurology 309, 86114.CrossRefGoogle Scholar
Lee, B.B. (2004). Paths to colour in the retina. Clinical and Experimental Optometry 87, 239248.CrossRefGoogle Scholar
Lennie, P., Haake, P.W., & Williams, D.R. (1991). The design of chromatically opponent receptive fields. In Computational Models of Visual Processing, eds. Landy, M.S. & Movshon, J.A., pp. 7182. MIT Press, Cambridge.
Marc, R.E. & Sperling, H.G. (1977). Chromatic organization of primate cones. Science 196, 454456.CrossRefGoogle Scholar
Martin, P.R. & Grunert, U. (1999). Analysis of the short wavelength-sensitive (“blue”) cone mosaic in the primate retina: Comparison of New World and Old World monkeys. Journal of Comparative Neurology 406, 114.Google Scholar
Martin, P.R., Grunert, U., Chan, T.L., & Bumsted, K. (2000). Spatial order in short-wavelength-sensitive cone photoreceptors: A comparative study of the primate retina. Journal of the Optical Society of America 17, 557579.CrossRefGoogle Scholar
Martin, P.R., Lee, B.B., White, A.J.R., Solomon, S.G., & Ruttiger, L. (2001). Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature 410, 933936.CrossRefGoogle Scholar
Mollon, J.D. & Bowmaker, J.K. (1992). The spatial arrangement of cones in the primate fovea. Nature 360, 677679.CrossRefGoogle Scholar
Nathans, J. (1999). The evolution and physiology of human color vision: Insights from molecular genetic studies of visual pigments. Neuron 24, 299312.CrossRefGoogle Scholar
Nathans, J., Davenport, C.M., Maumenee, I.H., Lewis, R.A., Hejtmancik, J.F., Litt, M., Lovrien, E., Weleber, R., Bachynski, B., Zwas, F., Klingaman, R., & Fishman, G. (1989). Molecular genetics of blue cone monochromacy. Science 245, 831838.CrossRefGoogle Scholar
Neitz, M., Kraft, T.W., & Neitz, J. (1998). Expression of L cone pigment gene subtypes in females. Vision Research 38, 32213225.CrossRefGoogle Scholar
Neitz, M. & Neitz, J. (2001). A new test for mass screening of school age children for red-green color vision defects. Color Research & Application 26, S239S249.3.0.CO;2-L>CrossRefGoogle Scholar
Reese, B.E., Necessary, B.D., Tam, P.P., Faulkner-Jones, B., & Tan, S.S. (1999). Clonal expansion and cell dispersion in the developing mouse retina. European Journal of Neuroscience 11, 29652978.CrossRefGoogle Scholar
Reese, B.E. & Tan, S.S. (1998). Clonal boundary analysis in the developing retina using X-inactivation transgenic mosaic mice. Seminars in Cell & Developmental Biology 9, 285292.CrossRefGoogle Scholar
Reid, R.C. & Shapely, R.M. (1992). Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature 356, 716718.CrossRefGoogle Scholar
Ringrose, L. & Paro, R. (2004). Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annual Review Genetics 38, 413443.CrossRefGoogle Scholar
Roorda, A., Metha, A., Lennie, P., & Williams, D.R. (2001). Packing arrangement of the three cone classes in primate retina. Vision Research 41, 12911306.CrossRefGoogle Scholar
Roorda, A. & Williams, D.R. (1999). The arrangement of the three cone classes in the living human eye. Nature 397, 520522.CrossRefGoogle Scholar
Smallwood, P.M., Wang, Y., & Nathans, J. (2002). Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes. PNAS 99, 10081011.CrossRefGoogle Scholar
Solomon, S.G., Lee, B.B., White, A.J., Ruttiger, L., & Martin, P.R. (2005). Chromatic organization of ganglion cell receptive fields in the peripheral retina. Journal of Neuroscience 25, 45274539.Google Scholar
Wang, Y., Macke, J.P., Merbs, S.L., Zack, D.J., Klaunberg, B., Bennett, J., Gearhart, J., & Nathans, J. (1992). A locus control region adjacent to the human red and green visual pigment genes. Neuron 9, 429440.CrossRefGoogle Scholar
Wang, Y., Smallwood, P.M., Cowan, M., Blesh, D., Lawler, A., & Nathans, J. (1999). Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors. Proceedings of the National Academy of Sciences, U.S.A. 96, 52515256.CrossRefGoogle Scholar
Wikler, K.C. & Rakic, P. (1990). Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. The Journal of Neuroscience 10, 33903401.Google Scholar
Winderickx, J., Battisti, L., Motulsky, A.G., & Deeb, S.S. (1992). Selective expression of human X chromosome-linked green opsin genes. Proceedings of the National Academy of Sciences USA 89, 97109714.CrossRefGoogle Scholar
Xiao, M. & Hendrickson, A. (2000). Spatial and temporal expression of short, long/medium or both opsins in human fetal cones. Journal of Comparative Neurology 425, 545559.3.0.CO;2-3>CrossRefGoogle Scholar