Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T16:43:08.751Z Has data issue: false hasContentIssue false

Topographic organization of areas V3 and V4 and its relation to supra-areal organization of the primate visual system

Published online by Cambridge University Press:  30 June 2015

M.J. ARCARO*
Affiliation:
Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544 Department of Psychology, Princeton University, Princeton, New Jersey 08544
S. KASTNER
Affiliation:
Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544 Department of Psychology, Princeton University, Princeton, New Jersey 08544
*
*Address correspondence to: Michael Arcaro, Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544. E-mail: [email protected]

Abstract

Areas V3 and V4 are commonly thought of as individual entities in the primate visual system, based on definition criteria such as their representation of visual space, connectivity, functional response properties, and relative anatomical location in cortex. Yet, large-scale functional and anatomical organization patterns not only emphasize distinctions within each area, but also links across visual cortex. Specifically, the visuotopic organization of V3 and V4 appears to be part of a larger, supra-areal organization, clustering these areas with early visual areas V1 and V2. In addition, connectivity patterns across visual cortex appear to vary within these areas as a function of their supra-areal eccentricity organization. This complicates the traditional view of these regions as individual functional “areas.” Here, we will review the criteria for defining areas V3 and V4 and will discuss functional and anatomical studies in humans and monkeys that emphasize the integration of individual visual areas into broad, supra-areal clusters that work in concert for a common computational goal. Specifically, we propose that the visuotopic organization of V3 and V4, which provides the criteria for differentiating these areas, also unifies these areas into the supra-areal organization of early visual cortex. We propose that V3 and V4 play a critical role in this supra-areal organization by filtering information about the visual environment along parallel pathways across higher-order cortex.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdollahi, R.O., Kolster, H., Glasser, M.F., Robinson, E.C., Coalson, T.S., Dierker, D., Jenkinson, M., Van Essen, D.C. & Orban, G.A. (2014). Correspondences between retinotopic areas and myelin maps in human visual cortex. Neuroimage 99, 509524.CrossRefGoogle ScholarPubMed
Adams, D.L. & Zeki, S. (2001). Functional organization of macaque V3 for stereoscopic depth. Journal of Neurophysiology 86, 21952203.CrossRefGoogle ScholarPubMed
Aflalo, T.N. & Graziano, M.S. (2011). Organization of the macaque extrastriate visual cortex re-examined using the principle of spatial continuity of function. Journal of Neurophysiology 105, 305320.CrossRefGoogle ScholarPubMed
Allman, J.M. & Kaas, J.H. (1975). The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). Brain Research 100, 473487.CrossRefGoogle ScholarPubMed
Amano, K., Wandell, B.A. & Dumoulin, S.O. (2009). Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. Journal of Neurophysiology 102, 27042718.CrossRefGoogle ScholarPubMed
Angelucci, A., Levitt, J.B., Walton, E.J., Hupe, J.M., Bullier, J. & Lund, J.S. (2002). Circuits for local and global signal integration in primary visual cortex. The Journal of Neuroscience 22, 86338646.CrossRefGoogle ScholarPubMed
Arcaro, M.J., Honey, C.J., Mruczek, R.E., Kastner, S. & Hasson, U. (2015a). Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization. Elife 4.CrossRefGoogle ScholarPubMed
Arcaro, M.J., Pinsk, M.A. & Kastner, S. (2015b). The anatomical and functional organization of the human visual pulvinar. The Journal of Neuroscience (in press).CrossRefGoogle ScholarPubMed
Arcaro, M.J., Mcmains, S.A., Singer, B.D. & Kastner, S. (2009). Retinotopic organization of human ventral visual cortex. The Journal of Neuroscience 29, 1063810652.CrossRefGoogle ScholarPubMed
Arcaro, M.J., Pinsk, M.A., Li, X. & Kastner, S. (2011). Visuotopic organization of macaque posterior parietal cortex: A functional magnetic resonance imaging study. The Journal of Neuroscience 31, 20642078.CrossRefGoogle ScholarPubMed
Baizer, J.S., Ungerleider, L.G. & Desimone, R. (1991). Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. The Journal of Neuroscience 11, 168190.CrossRefGoogle Scholar
Baldassano, C., Beck, D.M. & Fei-Fei, L. (2014). Parcellating connectivity in spatial maps. PeerJ PrePrints 2, e709v1.Google Scholar
Baldassano, C., Iordan, M.C., Beck, D.M. & Fei-Fei, L. (2012). Voxel-level functional connectivity using spatial regularization. Neuroimage 63, 10991106.CrossRefGoogle ScholarPubMed
Bell, A.H., Malecek, N.J., Morin, E.L., Hadj-Bouziane, F., Tootell, R.B. & Ungerleider, L.G. (2011). Relationship between functional magnetic resonance imaging-identified regions and neuronal category selectivity. The Journal of Neuroscience 31, 1222912240.CrossRefGoogle ScholarPubMed
Bender, D.B. (1981). Retinotopic organization of macaque pulvinar. Journal of Neurophysiology 46, 672693.CrossRefGoogle ScholarPubMed
Blatt, G.J., Andersen, R.A. & Stoner, G.R. (1990). Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. The Journal of Comparative Neurology 299, 421445.CrossRefGoogle ScholarPubMed
Bourne, J.A. & Rosa, M.G. (2006). Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: Early maturation of the middle temporal area (MT). Cerebral Cortex 16, 405414.CrossRefGoogle ScholarPubMed
Brewer, A.A., Liu, J., Wade, A.R. & Wandell, B.A. (2005). Visual field maps and stimulus selectivity in human ventral occipital cortex. Nature Neuroscience 8, 11021109.CrossRefGoogle ScholarPubMed
Brewer, A.A., Press, W.A., Logothetis, N.K. & Wandell, B.A. (2002). Visual areas in macaque cortex measured using functional magnetic resonance imaging. The Journal of Neuroscience 22, 1041610426.CrossRefGoogle ScholarPubMed
Buckner, R.L. & Yeo, B.T. (2014). Borders, map clusters, and supra-areal organization in visual cortex. Neuroimage 93, 292297.CrossRefGoogle ScholarPubMed
Burkhalter, A., Felleman, D.J., Newsome, W.T. & Van Essen, D.C. (1986). Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex. Vision Research 26, 6380.CrossRefGoogle ScholarPubMed
Burkhalter, A. & Van Essen, D.C. (1986). Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey. The Journal of Neuroscience 6, 23272351.CrossRefGoogle ScholarPubMed
Butt, O.H., Benson, N.C., Datta, R. & Aguirre, G.K. (2013). The fine-scale functional correlation of striate cortex in sighted and blind people. The Journal of Neuroscience 33, 1620916219.CrossRefGoogle ScholarPubMed
Cavina-Pratesi, C., Kentridge, R.W., Heywood, C.A. & Milner, A.D. (2010). Separate channels for processing form, texture, and color: Evidence from FMRI adaptation and visual object agnosia. Cerebral Cortex 20, 23192332.CrossRefGoogle ScholarPubMed
Chklovskii, D.B. (2000). Binocular disparity can explain the orientation of ocular dominance stripes in primate primary visual area (V1). Vision Research 40, 17651773.CrossRefGoogle ScholarPubMed
Colby, C.L., Gattass, R., Olson, C.R. & Gross, C.G. (1988). Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study. The Journal of Comparative Neurology 269, 392413.CrossRefGoogle ScholarPubMed
Conde, F., Lund, J.S. & Lewis, D.A. (1996). The hierarchical development of monkey visual cortical regions as revealed by the maturation of parvalbumin-immunoreactive neurons. Brain Research. Developmental Brain Research 96, 261276.CrossRefGoogle ScholarPubMed
Conway, B.R. & Tsao, D.Y. (2009). Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America 106, 1803418039.CrossRefGoogle ScholarPubMed
Cragg, B.G. (1969). The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. Vision Research 9, 733747.CrossRefGoogle ScholarPubMed
Cusick, C.G., Gould, H.J. III & Kaas, J.H. (1984). Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus). The Journal of Comparative Neurology 230, 311336.CrossRefGoogle ScholarPubMed
Desimone, R. & Gross, C.G. (1979). Visual areas in the temporal cortex of the macaque. Brain Research 178, 363380.CrossRefGoogle ScholarPubMed
Desimone, R. & Schein, S.J. (1987). Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form. Journal of Neurophysiology 57, 835868.CrossRefGoogle ScholarPubMed
Deyoe, E.A., Carman, G.J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., Miller, D. & Neitz, J. (1996). Mapping striate and extrastriate visual areas in human cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America 93, 23822386.CrossRefGoogle ScholarPubMed
Dick, A., Kaske, A. & Creutzfeldt, O.D. (1991). Topographical and topological organization of the thalamocortical projection to the striate and prestriate cortex in the marmoset (Callithrix jacchus). Experimental Brain Research 84, 233253.CrossRefGoogle Scholar
Durbin, R. & Mitchison, G. (1990). A dimension reduction framework for understanding cortical maps. Nature 343, 644647.CrossRefGoogle ScholarPubMed
Fan, R.H., Baldwin, M.K., Jermakowicz, W.J., Casagrande, V.A., Kaas, J.H. & Roe, A.W. (2012). Intrinsic signal optical imaging evidence for dorsal V3 in the prosimian galago (Otolemur garnettii). The Journal of Comparative Neurology 520, 42544274.CrossRefGoogle ScholarPubMed
Felleman, D.J., Burkhalter, A. & Van Essen, D.C. (1997). Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex. The Journal of Comparative Neurology 379, 2147.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Felleman, D.J. & Van Essen, D.C. (1987). Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. Journal of Neurophysiology 57, 889920.CrossRefGoogle ScholarPubMed
Fize, D., Vanduffel, W., Nelissen, K., Denys, K., Chef D'hotel, C., Faugeras, O. & Orban, G.A. (2003). The retinotopic organization of primate dorsal V4 and surrounding areas: A functional magnetic resonance imaging study in awake monkeys. The Journal of Neuroscience 23, 73957406.CrossRefGoogle Scholar
Gattass, R., Galkin, T.W., Desimone, R. & Ungerleider, L.G. (2014). Subcortical connections of area V4 in the macaque. The Journal of Comparative Neurology 522, 19411965.CrossRefGoogle ScholarPubMed
Gattass, R., Nascimento-Silva, S., Soares, J.G., Lima, B., Jansen, A.K., Diogo, A.C., Farias, M.F., Botelho, M.M., Mariani, O.S., Azzi, J. & Fiorani, M. (2005). Cortical visual areas in monkeys: Location, topography, connections, columns, plasticity and cortical dynamics. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 709731.CrossRefGoogle ScholarPubMed
Gattass, R., Sousa, A.P. & Gross, C.G. (1988). Visuotopic organization and extent of V3 and V4 of the macaque. The Journal of Neuroscience 8, 18311845.CrossRefGoogle ScholarPubMed
Gattass, R., Sousa, A.P., Mishkin, M. & Ungerleider, L.G. (1997). Cortical projections of area V2 in the macaque. Cerebral Cortex 7, 110129.CrossRefGoogle ScholarPubMed
Gegenfurtner, K.R., Kiper, D.C. & Levitt, J.B. (1997). Functional properties of neurons in macaque area V3. Journal of Neurophysiology 77, 19061923.CrossRefGoogle ScholarPubMed
Ghose, G.M. & Ts'O, D.Y. (1997). Form processing modules in primate area V4. Journal of Neurophysiology 77, 21912196.CrossRefGoogle ScholarPubMed
Haak, K.V., Winawer, J., Harvey, B.M., Renken, R., Dumoulin, S.O., Wandell, B.A. & Cornelissen, F.W. (2012). Connective field modeling. Neuroimage 66C, 376384.Google Scholar
Hagler, D.J. Jr. (2014). Visual field asymmetries in visual evoked responses. Journal of Vision 14.CrossRefGoogle ScholarPubMed
Hansen, K.A., Kay, K.N. & Gallant, J.L. (2007). Topographic organization in and near human visual area V4. The Journal of Neuroscience 27, 1189611911.CrossRefGoogle ScholarPubMed
Hasson, U., Levy, I., Behrmann, M., Hendler, T. & Malach, R. (2002). Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34, 479490.CrossRefGoogle ScholarPubMed
Heinzle, J., Kahnt, T. & Haynes, J.D. (2011). Topographically specific functional connectivity between visual field maps in the human brain. Neuroimage 56, 14261436.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1967). Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. Journal of Neurophysiology 30, 15611573.CrossRefGoogle ScholarPubMed
Janssens, T., Zhu, Q., Popivanov, I.D. & Vanduffel, W. (2014). Probabilistic and single-subject retinotopic maps reveal the topographic organization of face patches in the macaque cortex. The Journal of Neuroscience 34, 1015610167.CrossRefGoogle ScholarPubMed
Jbabdi, S., Sotiropoulos, S.N. & Behrens, T.E. (2013). The topographic connectome. Current Opinion in Neurobiology 23, 207215.CrossRefGoogle ScholarPubMed
Jeffs, J., Federer, F., Ichida, J.M. & Angelucci, A. (2013). High-resolution mapping of anatomical connections in marmoset extrastriate cortex reveals a complete representation of the visual field bordering dorsal V2. Cerebral Cortex 23, 11261147.CrossRefGoogle ScholarPubMed
Jeffs, J., Ichida, J.M., Federer, F. & Angelucci, A. (2009). Anatomical evidence for classical and extra-classical receptive field completion across the discontinuous horizontal meridian representation of primate area V2. Cerebral Cortex 19, 963981.CrossRefGoogle ScholarPubMed
Kaas, J.H. (1997). Topographic maps are fundamental to sensory processing. Brain Research Bulletin 44, 107112.CrossRefGoogle ScholarPubMed
Kaas, J.H. & Catania, K.C. (2002). How do features of sensory representations develop? BioEssays 24, 334343.CrossRefGoogle ScholarPubMed
Kaas, J.H., Guillery, R.W. & Allman, J.M. (1972). Some principles of organization in the dorsal lateral geniculate nucleus. Brain, Behavior and Evolution 6, 253299.CrossRefGoogle ScholarPubMed
Kaas, J.H. & Lyon, D.C. (2001). Visual cortex organization in primates: Theories of V3 and adjoining visual areas. Progress in Brain Research 134, 285295.CrossRefGoogle ScholarPubMed
Kennedy, H., Dehay, C. & Bullier, J. (1986). Organization of the callosal connections of visual areas V1 and V2 in the macaque monkey. The Journal of Comparative Neurology 247, 398415.CrossRefGoogle ScholarPubMed
Kim, M., Ducros, M., Ugurbil, K. & Kim, D.S. (2005). Topography of high-order human object areas measured with DTI and fMRI. Proceedings of the International Society for Magnetic Resonance in Medicine 13, 737.Google Scholar
Kobatake, E. & Tanaka, K. (1994). Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. Journal of Neurophysiology 71, 856867.CrossRefGoogle ScholarPubMed
Kolster, H., Janssens, T., Orban, G.A. & Vanduffel, W. (2014). The retinotopic organization of macaque occipitotemporal cortex anterior to V4 and caudoventral to the middle temporal (MT) cluster. The Journal of Neuroscience 34, 1016810191.CrossRefGoogle Scholar
Kolster, H., Mandeville, J.B., Arsenault, J.T., Ekstrom, L.B., Wald, L.L. & Vanduffel, W. (2009). Visual field map clusters in macaque extrastriate visual cortex. The Journal of Neuroscience 29, 70317039.CrossRefGoogle ScholarPubMed
Kolster, H., Peeters, R. & Orban, G.A. (2010). The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. The Journal of Neuroscience 30, 98019820.CrossRefGoogle ScholarPubMed
Konen, C.S. & Kastner, S. (2008). Two hierarchically organized neural systems for object information in human visual cortex. Nature Neuroscience 11, 224231.CrossRefGoogle ScholarPubMed
Kornblith, S., Cheng, X., Ohayon, S. & Tsao, D.Y. (2013). A network for scene processing in the macaque temporal lobe. Neuron 79, 766781.CrossRefGoogle Scholar
Krubitzer, L.A. & Kaas, J.H. (1993). The dorsomedial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates. The Journal of Comparative Neurology 334, 497528.CrossRefGoogle ScholarPubMed
Larsson, J. & Heeger, D.J. (2006). Two retinotopic visual areas in human lateral occipital cortex. The Journal of Neuroscience 26, 1312813142.CrossRefGoogle ScholarPubMed
Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. (2001). Center-periphery organization of human object areas. Nature Neuroscience 4, 533539.CrossRefGoogle ScholarPubMed
Lu, H.D. & Roe, A.W. (2008). Functional organization of color domains in V1 and V2 of macaque monkey revealed by optical imaging. Cerebral Cortex 18, 516533.CrossRefGoogle ScholarPubMed
Luck, S.J., Chelazzi, L., Hillyard, S.A. & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology 77, 2442.CrossRefGoogle ScholarPubMed
Lyon, D.C. (2013). The case for a dorsal V3 in the 'third-tier' of primate visual cortex: A reply to 'the case for a dorsomedial area in the primate 'third-tier' visual cortex'. Proceedings of the Royal Society B 280.Google Scholar
Lyon, D.C. & Connolly, J.D. (2012). The case for primate V3. Proceedings Biological Sciences 279, 625633.Google ScholarPubMed
Lyon, D.C. & Kaas, J.H. (2001). Connectional and architectonic evidence for dorsal and ventral V3, and dorsomedial area in marmoset monkeys. The Journal of Neuroscience 21, 249261.CrossRefGoogle ScholarPubMed
Lyon, D.C. & Kaas, J.H. (2002a). Evidence for a modified V3 with dorsal and ventral halves in macaque monkeys. Neuron 33, 453461.CrossRefGoogle ScholarPubMed
Lyon, D.C. & Kaas, J.H. (2002b). Evidence from V1 connections for both dorsal and ventral subdivisions of V3 in three species of New World monkeys. The Journal of Comparative Neurology 449, 281297.CrossRefGoogle ScholarPubMed
Lyon, D.C., Nassi, J.J. & Callaway, E.M. (2010). A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron 65, 270279.CrossRefGoogle ScholarPubMed
Lyon, D.C., Xu, X., Casagrande, V.A., Stefansic, J.D., Shima, D. & Kaas, J.H. (2002). Optical imaging reveals retinotopic organization of dorsal V3 in New World owl monkeys. Proceedings of the National Academy of Sciences of the United States of America 99, 1573515742.CrossRefGoogle ScholarPubMed
Maguire, W.M. & Baizer, J.S. (1984). Visuotopic organization of the prelunate gyrus in rhesus monkey. The Journal of Neuroscience 4, 16901704.CrossRefGoogle ScholarPubMed
Malach, R., Levy, I. & Hasson, U. (2002). The topography of high-order human object areas. Trends in Cognitive Sciences 6, 176184.CrossRefGoogle ScholarPubMed
Maunsell, J.H. & Van Essen, D.C. (1983a). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. The Journal of Neuroscience 3, 25632586.CrossRefGoogle ScholarPubMed
Maunsell, J.H. & Van Essen, D.C. (1983b). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology 49, 11271147.CrossRefGoogle ScholarPubMed
Mountcastle, V.B. (1957). Modality and topographic properties of single neurons of cat's somatic sensory cortex. Journal of Neurophysiology 20, 408434.CrossRefGoogle ScholarPubMed
Nakamura, H., Gattass, R., Desimone, R. & Ungerleider, L.G. (1993). The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques. The Journal of Neuroscience 13, 36813691.CrossRefGoogle ScholarPubMed
Nallasamy, N. & Tsao, D.Y. (2011). Functional connectivity in the brain: effects of anesthesia. Neuroscientist 17, 94106.CrossRefGoogle ScholarPubMed
Newsome, W.T. & Allman, J.M. (1980). Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis. The Journal of Comparative Neurology 194, 209233.CrossRefGoogle ScholarPubMed
Newsome, W.T. & Pare, E.B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). The Journal of Neuroscience 8, 22012211.CrossRefGoogle ScholarPubMed
Orban, G.A., Van Essen, D. & Vanduffel, W. (2004). Comparative mapping of higher visual areas in monkeys and humans. Trends in Cognitive Sciences 8, 315324.CrossRefGoogle ScholarPubMed
Orban, G.A., Zhu, Q. & Vanduffel, W. (2014). The transition in the ventral stream from feature to real-world entity representations. Frontiers in Psychology 5, 695.CrossRefGoogle ScholarPubMed
Pigarev, I.N., Nothdurft, H.C. & Kastner, S. (2002). Neurons with radial receptive fields in monkey area V4A: Evidence of a subdivision of prelunate gyrus based on neuronal response properties. Experimental Brain Research 145, 199206.CrossRefGoogle ScholarPubMed
Pinon, M.C., Gattass, R. & Sousa, A.P. (1998). Area V4 in Cebus monkey: Extent and visuotopic organization. Cerebral Cortex 8, 685701.CrossRefGoogle ScholarPubMed
Pinsk, M.A., Arcaro, M., Weiner, K.S., Kalkus, J.F., Inati, S.J., Gross, C.G. & Kastner, S. (2009). Neural representations of faces and body parts in macaque and human cortex: A comparative FMRI study. Journal of Neurophysiology 101, 25812600.CrossRefGoogle ScholarPubMed
Press, W.A., Brewer, A.A., Dougherty, R.F., Wade, A.R. & Wandell, B.A. (2001). Visual areas and spatial summation in human visual cortex. Vision Research 41, 13211332.CrossRefGoogle ScholarPubMed
Raemaekers, M., Schellekens, W., van Wezel, R.J., Petridou, N., Kristo, G. & Ramsey, N.F. (2014). Patterns of resting state connectivity in human primary visual cortical areas: A 7T fMRI study. Neuroimage 84, 911921.CrossRefGoogle Scholar
Roe, A.W., Chelazzi, L., Connor, C.E., Conway, B.R., Fujita, I., Gallant, J.L., Lu, H. & Vanduffel, W. (2012). Toward a unified theory of visual area V4. Neuron 74, 1229.CrossRefGoogle Scholar
Rosa, M.G. (2002). Visual maps in the adult primate cerebral cortex: Some implications for brain development and evolution. Brazilian Journal of Medical and Biological Research 35, 14851498.CrossRefGoogle ScholarPubMed
Rosa, M.G., Angelucci, A., Jeffs, J. & Pettigrew, J.D. (2013). The case for a dorsomedial area in the primate 'third-tier' visual cortex. Proceedings Biological Sciences 280, 20121372. discussion 20121994.Google ScholarPubMed
Rosa, M.G. & Manger, P.R. (2005). Clarifying homologies in the mammalian cerebral cortex: The case of the third visual area (V3). Clinical and Experimental Pharmacology & Physiology 32, 327339.CrossRefGoogle ScholarPubMed
Rosa, M.G., Palmer, S.M., Gamberini, M., Burman, K.J., Yu, H.H., Reser, D.H., Bourne, J.A., Tweedale, R. & Galletti, C. (2009). Connections of the dorsomedial visual area: Pathways for early integration of dorsal and ventral streams in extrastriate cortex. The Journal of Neuroscience 29, 45484563.CrossRefGoogle ScholarPubMed
Rosa, M.G., Palmer, S.M., Gamberini, M., Tweedale, R., Pinon, M.C. & Bourne, J.A. (2005). Resolving the organization of the new world monkey third visual complex: The dorsal extrastriate cortex of the marmoset (Callithrix jacchus). The Journal of Comparative Neurology 483, 164191.CrossRefGoogle ScholarPubMed
Rosa, M.G. & Tweedale, R. (2005). Brain maps, great and small: Lessons from comparative studies of primate visual cortical organization. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 665691.CrossRefGoogle ScholarPubMed
Schira, M.M., Tyler, C.W., Breakspear, M. & Spehar, B. (2009). The foveal confluence in human visual cortex. The Journal of Neuroscience 29, 90509058.CrossRefGoogle ScholarPubMed
Sereno, M.I., Dale, A.M., Reppas, J.B., Kwong, K.K., Belliveau, J.W., Brady, T.J., Rosen, B.R. & Tootell, R.B. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889893.CrossRefGoogle ScholarPubMed
Shipp, S. (2003). The functional logic of cortico-pulvinar connections. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 358, 16051624.CrossRefGoogle ScholarPubMed
Smith, A.T., Greenlee, M.W., Singh, K.D., Kraemer, F.M. & Hennig, J. (1998). The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). The Journal of Neuroscience 18, 38163830.CrossRefGoogle ScholarPubMed
Smith, A.T., Singh, K.D., Williams, A.L. & Greenlee, M.W. (2001). Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. Cerebral Cortex 11, 11821190.CrossRefGoogle ScholarPubMed
Smith, S.M., Miller, K.L., Moeller, S., Xu, J., Auerbach, E.J., Woolrich, M.W., Beckmann, C.F., Jenkinson, M., Andersson, J., Glasser, M.F., Van Essen, D.C., Feinberg, D.A., Yacoub, E.S. & Ugurbil, K. (2012). Temporally-independent functional modes of spontaneous brain activity. Proceedings of the National Academy of Sciences of the United States of America 109, 31313136.CrossRefGoogle ScholarPubMed
Solomon, S.G. & Rosa, M.G. (2014). A simpler primate brain: The visual system of the marmoset monkey. Frontiers in Neural Circuits 8, 96.CrossRefGoogle ScholarPubMed
Stepniewska, I., Collins, C.E. & Kaas, J.H. (2005). Reappraisal of DL/V4 boundaries based on connectivity patterns of dorsolateral visual cortex in macaques. Cerebral Cortex 15, 809822.CrossRefGoogle ScholarPubMed
Tanigawa, H., Lu, H.D. & Roe, A.W. (2010). Functional organization for color and orientation in macaque V4. Nature Neuroscience 13, 15421548.CrossRefGoogle ScholarPubMed
Tootell, R.B. & Hadjikhani, N. (2001). Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. Cerebral Cortex 11, 298311.CrossRefGoogle ScholarPubMed
Tsao, D.Y., Freiwald, W.A., Tootell, R.B. & Livingstone, M.S. (2006). A cortical region consisting entirely of face-selective cells. Science 311, 670674.CrossRefGoogle ScholarPubMed
Ungerleider, L.G. & Desimone, R. (1986). Cortical connections of visual area MT in the macaque. The Journal of Comparative Neurology 248, 190222.CrossRefGoogle ScholarPubMed
Ungerleider, L.G., Galkin, T.W., Desimone, R. & Gattass, R. (2008). Cortical connections of area V4 in the macaque. Cerebral Cortex 18, 477499.CrossRefGoogle ScholarPubMed
Ungerleider, L.G., Galkin, T.W., Desimone, R. & Gattass, R. (2014). Subcortical projections of area V2 in the macaque. Journal of Cognitive Neuroscience 26, 12201233.CrossRefGoogle ScholarPubMed
Ungerleider, L.G., Mishkin, M. (1982). Two cortical visual systems. In Analysis of Visual Behavior, ed. Ingle, D.J., Mansfield, R.J.W. & Goodale, M.A., Cambridge, MA: MIT Press.Google Scholar
Van Essen, D.C. (1985). Functional organization of primate visual cortex. In Cerebral Cortex, ed. Peters, A. & Jones, E.G., New York: Plenum.Google Scholar
Van Essen, D.C. (2004). Organization of visual areas in macaque and human cerebral cortex. In The Visual Neurosciences, ed. Werner, L.C.A.J.S., Cambridge, MA: MIT Press.Google Scholar
Van Essen, D.C., Newsome, W.T., Maunsell, J.H. & Bixby, J.L. (1986). The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections. The Journal of Comparative Neurology 244, 451480.CrossRefGoogle ScholarPubMed
Van Essen, D.C. & Zeki, S.M. (1978). The topographic organization of rhesus monkey prestriate cortex. The Journal of Physiology 277, 193226.CrossRefGoogle Scholar
Vincent, J.L., Patel, G.H., Fox, M.D., Snyder, A.Z., Baker, J.T., Van Essen, D.C., Zempel, J.M., Snyder, L.H., Corbetta, M. & Raichle, M.E. 2007. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 8386.CrossRefGoogle ScholarPubMed
Wade, A.R., Brewer, A.A., Rieger, J.W. & Wandell, B.A. (2002). Functional measurements of human ventral occipital cortex: Retinotopy and colour. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 357, 963973.CrossRefGoogle ScholarPubMed
Wandell, B.A., Brewer, A.A. & Dougherty, R.F. (2005). Visual field map clusters in human cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 693707.CrossRefGoogle ScholarPubMed
Wandell, B.A., Dumoulin, S.O. & Brewer, A.A. (2007). Visual field maps in human cortex. Neuron 56, 366383.CrossRefGoogle ScholarPubMed
Wandell, B.A. & Winawer, J. (2011). Imaging retinotopic maps in the human brain. Vision Research 51, 718737.CrossRefGoogle ScholarPubMed
Wang, L., Mruczek, R.E., Arcaro, M.J. & Kastner, S. (2014) Probabilistic maps of visual topography in human cortex. Cerebral Cortex, doi: 10.1093/cercor/bhu277.Google ScholarPubMed
Warner, C.E., Kwan, W.C. & Bourne, J.A. (2012). The early maturation of visual cortical area MT is dependent on input from the retinorecipient medial portion of the inferior pulvinar. The Journal of Neuroscience 32, 1707317085.CrossRefGoogle ScholarPubMed
Winawer, J., Horiguchi, H., Sayres, R.A., Amano, K. & Wandell, B.A. (2010). Mapping hV4 and ventral occipital cortex: The venous eclipse. Journal of Vision 10, 1.CrossRefGoogle ScholarPubMed
Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zollei, L., Polimeni, J.R., Fischl, B., Liu, H. & Buckner, R.L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology 106, 11251165.Google ScholarPubMed
Young, M.P. (1992). Objective analysis of the topological organization of the primate cortical visual system. Nature 358, 152155.CrossRefGoogle ScholarPubMed
Zeki, S. (1993). The visual association cortex. Current Opinion in Neurobiology 3, 155159.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1969a). Representation of central visual fields in prestriate cortex of monkey. Brain Research, 14, 271291.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1969b). The secondary visual areas of the monkey. Brain Research 13, 197226.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1973). Colour coding in rhesus monkey prestriate cortex. Brain Research 53, 422427.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1978). The third visual complex of rhesus monkey prestriate cortex. The Journal of Physiology 277, 245272.CrossRefGoogle ScholarPubMed