Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T10:53:10.652Z Has data issue: false hasContentIssue false

Thalamocortical processing in vision

Published online by Cambridge University Press:  20 June 2017

REECE MAZADE
Affiliation:
Department of Biological and Visual Sciences, State University of New York, College of Optometry, New York, New York 10036
JOSE MANUEL ALONSO*
Affiliation:
Department of Biological and Visual Sciences, State University of New York, College of Optometry, New York, New York 10036
*
*Address correspondence to: Jose-Manuel Alonso, State University of New York, College of Optometry, Department of Biological and Visual Sciences, 33 West, 42nd street, 17th floor New York, NY 10036. E-mail: [email protected]

Abstract

Visual information reaches the cerebral cortex through a major thalamocortical pathway that connects the lateral geniculate nucleus (LGN) of the thalamus with the primary visual area of the cortex (area V1). In humans, ∼3.4 million afferents from the LGN are distributed within a V1 surface of ∼2400 mm2, an afferent number that is reduced by half in the macaque and by more than two orders of magnitude in the mouse. Thalamocortical afferents are sorted in visual cortex based on the spatial position of their receptive fields to form a map of visual space. The visual resolution within this map is strongly correlated with total number of thalamic afferents that V1 receives and the area available to sort them. The ∼20,000 afferents of the mouse are only sorted by spatial position because they have to cover a large visual field (∼300 deg) within just 4 mm2 of V1 area. By contrast, the ∼500,000 afferents of the cat are also sorted by eye input and light/dark polarity because they cover a smaller visual field (∼200 deg) within a much larger V1 area (∼400 mm2), a sorting principle that is likely to apply also to macaques and humans. The increased precision of thalamic sorting allows building multiple copies of the V1 visual map for left/right eyes and light/dark polarities, which become interlaced to keep neurons representing the same visual point close together. In turn, this interlaced arrangement makes cortical neurons with different preferences for stimulus orientation to rotate around single cortical points forming a pinwheel pattern that allows more efficient processing of objects and visual textures.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, , , D.L. & Horton, , , J.C. (2003). Capricious expression of cortical columns in the primate brain. Nature Neuroscience 6, 113114.CrossRefGoogle ScholarPubMed
Adams, , , D.L., Sincich, , , L.C. & Horton, , , J.C. (2007). Complete pattern of ocular dominance columns in human primary visual cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 27, 1039110403.CrossRefGoogle ScholarPubMed
Andrews, , , T.J., Halpern, , , S.D. & Purves, D. (1997). Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 17, 28592868.Google Scholar
Antonini, , , A., Fagiolini, , , M. & Stryker, , , M.P. (1999). Anatomical correlates of functional plasticity in mouse visual cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 19, 43884406.Google Scholar
Baker, , , G.E., Thompson, , , I.D., Krug, , , K., Smyth, , , D. & Tolhurst, , , D.J. (1998). Spatial-frequency tuning and geniculocortical projections in the visual cortex (areas 17 and 18) of the pigmented ferret. The European Journal of Neuroscience 10, 26572668.Google Scholar
Bezdudnaya, , , T., Cano, , , M., Bereshpolova, , , Y., Stoelzel, , , C.R., Alonso, , , J.M. & Swadlow, , , H.A. (2006). Thalamic burst mode and inattention in the awake LGNd. Neuron 49, 421432.CrossRefGoogle ScholarPubMed
Blasdel, G.G. (1992). Orientation selectivity, preference, and continuity in monkey striate cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 12, 31393161.CrossRefGoogle ScholarPubMed
Blasdel, , , G.G. & Lund, , , J.S. (1983). Termination of afferent axons in macaque striate cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 3, 13891413.CrossRefGoogle ScholarPubMed
Bonhoeffer, , , T. & Grinvald, A. (1991). Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353, 429431.Google Scholar
Bonhoeffer, , , T. & Grinvald, A. (1993). The layout of iso-orientation domains in area 18 of cat visual cortex: Optical imaging reveals a pinwheel-like organization. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 13, 41574180.Google Scholar
Bonhoeffer, , , T., Kim, , , D.S., Malonek, , , D., Shoham, , , D. & Grinvald, A. (1995). Optical imaging of the layout of functional domains in area 17 and across the area 17/18 border in cat visual cortex. The European Journal of Neuroscience 7, 19731988.CrossRefGoogle ScholarPubMed
Bosking, , , W.H., Zhang, , , Y., Schofield, , , B. & Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 17, 21122127.CrossRefGoogle ScholarPubMed
Bosman, , , L.W., Houweling, , , A.R., Owens, , , C.B., Tanke, , , N., Shevchouk, , , O.T., Rahmati, , , N., Teunissen, , , W.H., Ju, , , C., Gong, , , W., Koekkoek, , , S.K. & De Zeeuw, C.I. (2011). Anatomical pathways involved in generating and sensing rhythmic whisker movements. Frontiers in Integrative Neuroscience 5, 53.Google Scholar
Cai, , , D., Deangelis, , , G.C. & Freeman, , , R.D. (1997). Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. Journal of Neurophysiology 78, 10451061.Google Scholar
Cajal, S.R. (1995). Histology of the Nervous System. Vol. 1. New York: Oxford University Press.CrossRefGoogle Scholar
Carreira-Perpinan, , , M.A. & Goodhill, , , G.J. (2002). Are visual cortex maps optimized for coverage? Neural Computation 14, 15451560.CrossRefGoogle ScholarPubMed
Chklovskii, D.B., Schikorski, , , T. & Stevens, , , C.F. (2002). Wiring optimization in cortical circuits. Neuron 34, 341347.Google Scholar
Cleland, , , B.G., Dubin, , , M.W. & Levick, , , W.R. (1971). Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. The Journal of Physiology 217, 473496.CrossRefGoogle ScholarPubMed
Connolly, , , M. & Van Essen, D. (1984). The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey. The Journal of Comparative Neurology 226, 544564.Google Scholar
Constantine-Paton, , , M. & Law, , , M.I. (1978). Eye-specific termination bands in tecta of three-eyed frogs. Science 202, 639641.Google Scholar
Conway, , , J.L. & Schiller, , , P.H. (1983). Laminar organization of tree shrew dorsal lateral geniculate nucleus. Journal of Neurophysiology 50, 13301342.Google Scholar
Curcio, , , C.A. & Allen, , , K.A. (1990). Topography of ganglion cells in human retina. The Journal of Comparative Neurology 300, 525.Google Scholar
De Valois, , , R.L., Albrecht, , , D.G. & Thorell, , , L.G. (1982). Spatial frequency selectivity of cells in macaque visual cortex. Vision Research 22, 545559.Google Scholar
Drager, U.C. (1975). Receptive fields of single cells and topography in mouse visual cortex. The Journal of Comparative Neurology 160, 269290.Google Scholar
Drager, , , U.C. & Olsen, , , J.F. (1981). Ganglion cell distribution in the retina of the mouse. Investigative Ophthalmology & Visual Science 20, 285293.Google ScholarPubMed
Drenhaus, , , U., Von Gunten, , A. & Rager, G. (1997). Classes of axons and their distribution in the optic nerve of the tree shrew (Tupaia belangeri). The Anatomical Record 249, 103116.Google Scholar
Durbin, , , R. & Mitchison, G. (1990). A dimension reduction framework for understanding cortical maps. Nature 343, 644647.Google Scholar
Engelmann, , , R. & Peichl, L. (1996). Unique distribution of somatostatin-immunoreactive cells in the retina of the tree shrew (Tupaia belangeri). The European Journal of Neuroscience 8, 220228.Google Scholar
Fitzpatrick, , , D. & Raczkowski, D. (1990). Innervation patterns of single physiologically identified geniculocortical axons in the striate cortex of the tree shrew. Proceedings of the National Academy of Sciences of the United States of America 87, 449453.Google Scholar
Forte, , , J.D., Hashemi-Nezhad, , , M., Dobbie, , , W.J., Dreher, , , B. & Martin, , , P.R. (2005). Spatial coding and response redundancy in parallel visual pathways of the marmoset Callithrix jacchus. Visual Neuroscience 22, 479491.Google Scholar
Freund, , , T.F., Martin, , , K.A. & Whitteridge, D. (1985). Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements. The Journal of Comparative Neurology 242, 263274.Google Scholar
Garrett, , , M.E., Nauhaus, , , I., Marshel, , , J.H. & Callaway, , , E.M. (2014). Topography and areal organization of mouse visual cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 34, 1258712600.CrossRefGoogle ScholarPubMed
Gautschi, , , M. & Clarke, , , P.G. (2007). Neuronal death in the lateral geniculate nucleus of young ferrets following a cortical lesion: Time-course, age dependence and involvement of caspases. Brain Research 1167, 2030.Google Scholar
Goodhill, G.J. (1993). Topography and ocular dominance: A model exploring positive correlations. Biological Cybernetics 69, 109118.Google Scholar
Goodhill, , , G.J. & Lowel, S. (1995). Theory meets experiment: Correlated neural activity helps determine ocular dominance column periodicity. Trends in Neurosciences 18, 437439.Google Scholar
Goris, , , R.L., Simoncelli, , , E.P. & Movshon, , , J.A. (2015). Origin and function of tuning diversity in macaque visual cortex. Neuron 88, 819831.Google Scholar
Harting, , , J.K., Diamond, , , I.T. & Hall, , , W.C. (1973). Anterograde degeneration study of the cortical projections of the lateral geniculate and pulvinar nuclei in the tree shrew (Tupaia glis). The Journal of Comparative Neurology 150, 393440.CrossRefGoogle ScholarPubMed
Heard-Booth, , , A.N. & Kirk, , , E.C. (2012). The influence of maximum running speed on eye size: A test of Leuckart’s law in mammals. Anatomical Record 295, 10531062.Google Scholar
Heesy, C.P. (2004). On the relationship between orbit orientation and binocular visual field overlap in mammals. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 281, 11041110.Google Scholar
Heimel, , , J.A., Van Hooser, , , S.D. & Nelson, , , S.B. (2005). Laminar organization of response properties in primary visual cortex of the gray squirrel (Sciurus carolinensis). Journal of Neurophysiology 94, 35383554.Google Scholar
Henderson, Z. (1985). Distribution of ganglion cells in the retina of adult pigmented ferret. Brain Research 358, 221228.CrossRefGoogle ScholarPubMed
Holdefer, , , R.N. & Norton, , , T.T. (1995). Laminar organization of receptive field properties in the dorsal lateral geniculate nucleus of the tree shrew (Tupaiaglis belangeri). The Journal of Comparative Neurology 358, 401413.CrossRefGoogle ScholarPubMed
Howland, , , H.C., Merola, , , S. & Basarab, , , J.R. (2004). The allometry and scaling of the size of vertebrate eyes. Vision Research 44, 20432065.Google Scholar
Hubel, D.H. (1975). An autoradiographic study of the retino-cortical projections in the tree shrew (Tupaia glis). Brain Research 96, 4150.Google Scholar
Hubel, , , D.H. & Wiesel, , , T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology 160, 106154.Google Scholar
Hubel, , , D.H. & Wiesel, , , T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology 195, 215243.Google Scholar
Hubel, , , D.H. & Wiesel, , , T.N. (1977). Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London. Series B, Biological Sciences 198, 159.Google ScholarPubMed
Hughes, A. (1971). Topographical relationships between the anatomy and physiology of the rabbit visual system. Documenta Ophthalmologica 30, 33159.Google Scholar
Hughes, A. (1975). A quantitative analysis of the cat retinal ganglion cell topography. The Journal of Comparative Neurology 163, 107128.CrossRefGoogle ScholarPubMed
Hughes, A. (1977). The topography of vision in mammals of contrasting life style: Comparative optics and retinal organisation. In Handbook of Sensory Physiology, VII/5: The Visual System in Vertebrates, ed. Crescitelli, F., pp. 613756. Berlin: Springer-Verlag.Google Scholar
Hughes, , , A. & Wassle, H. (1976). The cat optic nerve: Fibre total count and diameter spectrum. The Journal of Comparative Neurology 169, 171184.Google Scholar
Humphrey, , , A.L. & Norton, , , T.T. (1980). Topographic organization of the orientation column system in the striate cortex of the tree shrew (Tupaia glis). I. Microelectrode recording. The Journal of Comparative Neurology 192, 531547.Google Scholar
Humphrey, , , A.L., Sur, , , M., Uhlrich, , , D.J. & Sherman, , , S.M. (1985a). Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. The Journal of Comparative Neurology 233, 159189.CrossRefGoogle ScholarPubMed
Humphrey, , , A.L., Sur, , , M., Uhlrich, , , D.J. & Sherman, , , S.M. (1985b). Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: Projections to area 18, to the 17/18 border region, and to both areas 17 and 18. The Journal of Comparative Neurology 233, 190212.Google Scholar
Jeon, , , C.J., Strettoi, , , E. & Masland, , , R.H. (1998). The major cell populations of the mouse retina. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 18, 89368946.CrossRefGoogle ScholarPubMed
Jin, , , J., Wang, , , Y., Swadlow, , , H.A. & Alonso, , , J.M. (2011). Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex. Nature Neuroscience 14, 232238.Google Scholar
Jin, , , J.Z., Weng, , , C., Yeh, , , C.I., Gordon, , , J.A., Ruthazer, , , E.S., Stryker, , , M.P., Swadlow, , , H.A. & Alonso, , , J.M. (2008). On and off domains of geniculate afferents in cat primary visual cortex. Nature Neuroscience 11, 8894.CrossRefGoogle ScholarPubMed
Johnson, , , E.N., Van Hooser, , S.D. & Fitzpatrick, D. (2010). The representation of S-cone signals in primary visual cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 30, 1033710350.Google Scholar
Kaas, , , J.H., Hall, , , W.C., Killackey, , , H. & Diamond, , , I.T. (1972). Visual cortex of the tree shrew (Tupaia glis): Architectonic subdivisions and representations of the visual field. Brain Research 42, 491496.CrossRefGoogle ScholarPubMed
Kaplan, , , E. & Shapley, , , R.M. (1982). X and Y cells in the lateral geniculate nucleus of macaque monkeys. The Journal of Physiology 330, 125143.CrossRefGoogle ScholarPubMed
Kim, , , C.B., Tom, , , B.W. & Spear, , , P.D. (1996). Effects of aging on the densities, numbers, and sizes of retinal ganglion cells in rhesus monkey. Neurobiology of Aging 17, 431438.Google Scholar
Koch, , , E., Jin, , , J., Alonso, , , J.M. & Zaidi, Q. (2016). Functional implications of orientation maps in primary visual cortex. Nature Communications 7, 13529.Google Scholar
Kong, , , X., Wang, , , K., Sun, , , X. & Witt, , , R.E. (2010). Comparative study of the retinal vessel anatomy of rhesus monkeys and humans. Clinical & Experimental Ophthalmology 38, 629634.Google Scholar
Krahe, , , T.E., El-Danaf, , , R.N., Dilger, , , E.K., Henderson, , , S.C. & Guido, W. (2011). Morphologically distinct classes of relay cells exhibit regional preferences in the dorsal lateral geniculate nucleus of the mouse. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 31, 1743717448.Google Scholar
Kremkow, , , J., Jin, , , J., Wang, , , Y. & Alonso, , , J.M. (2016). Principles underlying sensory map topography in primary visual cortex. Nature 533, 5257.Google Scholar
Law, , , M.I., Zahs, , , K.R. & Stryker, , , M.P. (1988). Organization of primary visual cortex (area 17) in the ferret. The Journal of Comparative Neurology 278, 157180.Google Scholar
Lee, , , K.S., Huang, , , X. & Fitzpatrick, D. (2016). Topology of ON and OFF inputs in visual cortex enables an invariant columnar architecture. Nature 533, 9094.Google Scholar
Levitt, , , J.B., Schumer, , , R.A., Sherman, , , S.M., Spear, , , P.D. & Movshon, , , J.A. (2001). Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys. Journal of Neurophysiology 85, 21112129.Google Scholar
Liu, , , G.B. & Pettigrew, , , J.D. (2003). Orientation mosaic in barn owl’s visual Wulst revealed by optical imaging: Comparison with cat and monkey striate and extra-striate areas. Brain Research 961, 153158.Google Scholar
Lowel, S. (1994). Ocular dominance column development: Strabismus changes the spacing of adjacent columns in cat visual cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 14, 74517468.Google Scholar
Malpeli, , , J.G. & Baker, , , F.H. (1975). The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta. The Journal of Comparative Neurology 161, 569594.Google Scholar
Miller, K.D. (1994). A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 14, 409441.Google Scholar
Mitchison, G. (1991). Neuronal branching patterns and the economy of cortical wiring. Proceedings of the Royal Society B: Biological Sciences 245, 151158.Google Scholar
Movshon, , , J.A., Thompson, , , I.D. & Tolhurst, , , D.J. (1978). Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex. The Journal of Physiology 283, 101120.Google Scholar
Muly, , , E.C. & Fitzpatrick, D. (1992). The morphological basis for binocular and ON/OFF convergence in tree shrew striate cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 12, 13191334.Google Scholar
Murphy, , , E.H. & Berman, N. (1979). The rabbit and the cat: A comparison of some features of response properties of single cells in the primary visual cortex. The Journal of Comparative Neurology 188, 401427.CrossRefGoogle Scholar
Najdzion, , , J., Wasilewska, , , B., Bogus-Nowakowska, , , K., Rowniak, , , M., Szteyn, , , S. & Robak, A. (2009). A morphometric comparative study of the lateral geniculate body in selected placental mammals: The common shrew, the bank vole, the rabbit, and the fox. Folia Morphologica 68, 7078.Google ScholarPubMed
Nakagama, , , H., Saito, , , T. & Tanaka, S. (2000). Effect of imbalance in activities between ON- and OFF-center LGN cells on orientation map formation. Biological Cybernetics 83, 8592.Google Scholar
Niell, , , C.M. & Stryker, , , M.P. (2008). Highly selective receptive fields in mouse visual cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 28, 75207536.Google Scholar
Norton, , , T.T., Rager, , , G. & Kretz, R. (1985). ON and OFF regions in layer IV of striate cortex. Brain Research 327, 319323.Google Scholar
Obermayer, , , K. & Blasdel, , , G.G. (1993). Geometry of orientation and ocular dominance columns in monkey striate cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 13, 41144129.Google Scholar
Obermayer, , , K. & Blasdel, , , G.G. (1997). Singularities in primate orientation maps. Neural Computation 9, 555575.Google Scholar
Ohki, , , K., Chung, , , S., Kara, , , P., Hubener, , , M., Bonhoeffer, , , T. & Reid, , , R.C. (2006). Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442, 925928.Google Scholar
Orlowski, , , J., Harmening, , , W. & Wagner, H. (2012). Night vision in barn owls: Visual acuity and contrast sensitivity under dark adaptation. Journal of Vision 12, 4.Google Scholar
Oyster, , , C.W., Takahashi, , , E.S. & Hurst, , , D.C. (1981). Density, soma size, and regional distribution of rabbit retinal ganglion cells. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 1, 13311346.CrossRefGoogle ScholarPubMed
Paik, , , S.B. & Ringach, , , D.L. (2011). Retinal origin of orientation maps in visual cortex. Nature Neuroscience 14, 919925.Google Scholar
Perry, , , V.H. & Cowey, A. (1985). The ganglion cell and cone distributions in the monkey’s retina: Implications for central magnification factors. Vision Research 25, 17951810.Google Scholar
Petry, , , H.M., Fox, , , R. & Casagrande, , , V.A. (1984). Spatial contrast sensitivity of the tree shrew. Vision Research 24, 10371042.CrossRefGoogle ScholarPubMed
Price, , , D.J. & Morgan, , , J.E. (1987). Spatial properties of neurones in the lateral geniculate nucleus of the pigmented ferret. Experimental Brain Research 68, 2836.Google Scholar
Raczkowski, , , D. & Fitzpatrick, D. (1990). Terminal arbors of individual, physiologically identified geniculocortical axons in the tree shrew’s striate cortex. The Journal of Comparative Neurology 302, 500514.Google Scholar
Rao, , , S.C., Toth, , , L.J. & Sur, M. (1997). Optically imaged maps of orientation preference in primary visual cortex of cats and ferrets. The Journal of Comparative Neurology 387, 358370.Google Scholar
Roe, , , A.W., Fritsches, , , K. & Pettigrew, , , J.D. (2005). Optical imaging of functional organization of V1 and V2 in marmoset visual cortex. The anatomical record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 287, 12131225.Google Scholar
Schiller, , , P.H. & Malpeli, , , J.G. (1978). Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. Journal of Neurophysiology 41, 788797.Google Scholar
Scholl, , , B., Burge, , , J. & Priebe, , , N.J. (2013). Binocular integration and disparity selectivity in mouse primary visual cortex. Journal of Neurophysiology 109, 30133024.Google Scholar
Seecharan, , , D.J., Kulkarni, , , A.L., Lu, , , L., Rosen, , , G.D. & Williams, , , R.W. (2003). Genetic control of interconnected neuronal populations in the mouse primary visual system. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 23, 1117811188.Google Scholar
Selemon, , , L.D. & Begovic, A. (2007). Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects. Psychiatry Research 151, 110.Google Scholar
Sesma, , , M.A., Casagrande, , , V.A. & Kaas, , , J.H. (1984). Cortical connections of area 17 in tree shrews. The Journal of Comparative Neurology 230, 337351.Google Scholar
Sherman, S.M. (1974). Permanence of visual perimetry deficits in monocularly and binocularly deprived cats. Brain Research 73, 491501.Google Scholar
Sherman, , , S.M., Norton, , , T.T. & Casagrande, , , V.A. (1975). X- and Y-cells in the dorsal lateral geniculate nucleus of the tree shrew (Tupaia glis). Brain Research 93, 152157.Google Scholar
Soodak, R.E. (1987). The retinal ganglion cell mosaic defines orientation columns in striate cortex. Proceedings of the National Academy of Sciences of the United States of America 84, 39363940.Google Scholar
Stevens, C.F. (2001). An evolutionary scaling law for the primate visual system and its basis in cortical function. Nature 411, 193195.Google Scholar
Stoelzel, , , C.R., Bereshpolova, , , Y., Gusev, , , A.G. & Swadlow, , , H.A. (2008). The impact of an LGNd impulse on the awake visual cortex: Synaptic dynamics and the sustained/transient distinction. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 28, 50185028.Google Scholar
Swadlow, , , H.A. & Weyand, , , T.G. (1985). Receptive-field and axonal properties of neurons in the dorsal lateral geniculate nucleus of awake unparalyzed rabbits. Journal of Neurophysiology 54, 168183.Google Scholar
Swindale, , , N.V., Shoham, , , D., Grinvald, , , A., Bonhoeffer, , , T. & Hubener, M. (2000). Visual cortex maps are optimized for uniform coverage. Nature Neuroscience 3, 822826.Google Scholar
Takahata, , , T., Miyashita, , , M., Tanaka, , , S. & Kaas, , , J.H. (2014). Identification of ocular dominance domains in New World owl monkeys by immediate-early gene expression. Proceedings of the National Academy of Sciences of the United States of America 111, 42974302.Google Scholar
Tang, , , J., Ardila Jimenez, S.C., Chakraborty, , , S. & Schultz, , , S.R. (2016). Visual receptive field properties of neurons in the mouse lateral geniculate nucleus. PLoS One 11, e0146017.Google Scholar
Tusa, , , R.J., Palmer, , , L.A. & Rosenquist, , , A.C. (1978). The retinotopic organization of area 17 (striate cortex) in the cat. The Journal of Comparative Neurology 177, 213235.Google Scholar
Tusa, , , R.J., Rosenquist, , , A.C. & Palmer, , , L.A. (1979). Retinotopic organization of areas 18 and 19 in the cat. The Journal of Comparative Neurology 185, 657678.Google Scholar
Vaney, , , D.I., Peichl, , , L., Wassle, , , H. & Illing, , , R.B. (1981). Almost all ganglion cells in the rabbit retina project to the superior colliculus. Brain Research 212, 447453.Google Scholar
Veilleux, , , C.C. & Kirk, , , E.C. (2014). Visual acuity in mammals: Effects of eye size and ecology. Brain, Behavior and Evolution 83, 4353.Google Scholar
Vitek, , , D.J., Schall, , , J.D. & Leventhal, , , A.G. (1985). Morphology, central projections, and dendritic field orientation of retinal ganglion cells in the ferret. The Journal of Comparative Neurology 241, 111.Google Scholar
Wassle, , , H., Boycott, , , B.B. & Illing, , , R.B. (1981). Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations. Proceedings of the Royal Society of London. Series B, Biological sciences 212, 177195.Google Scholar
Wassle, , , H. & Illing, , , R.B. (1980). The retinal projection to the superior colliculus in the cat: A quantitative study with HRP. The Journal of Comparative Neurology 190, 333356.Google Scholar
Williams, , , R.W., Cavada, , , C. & Reinoso-Suarez, F. (1993). Rapid evolution of the visual system: A cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 13, 208228.Google Scholar
Williams, , , R.W., Strom, , , R.C., Rice, , , D.S. & Goldowitz, D. (1996). Genetic and environmental control of variation in retinal ganglion cell number in mice. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 16, 71937205.Google Scholar
Woolsey, , , T.A. & Van Der Loos, H. (1970). The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Research 17, 205242.Google Scholar
Xu, , , X., Bosking, , , W., Sary, , , G., Stefansic, , , J., Shima, , , D. & Casagrande, V. (2004). Functional organization of visual cortex in the owl monkey. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 24, 62376247.Google Scholar
Xu, , , X., Bosking, , , W.H., White, , , L.E., Fitzpatrick, , , D. & Casagrande, , , V.A. (2005). Functional organization of visual cortex in the prosimian bush baby revealed by optical imaging of intrinsic signals. Journal of Neurophysiology 94, 27482762.CrossRefGoogle ScholarPubMed
Yacoub, , , E., Harel, , , N. & Ugurbil, K. (2008). High-field fMRI unveils orientation columns in humans. Proceedings of the National Academy of Sciences of the United States of America 105, 1060710612.Google Scholar
Yeh, , , C.I., Stoelzel, , , C.R. & Alonso, , , J.M. (2003). Two different types of Y cells in the cat lateral geniculate nucleus. Journal of Neurophysiology 90, 18521864.Google Scholar
Zahs, , , K.R. & Stryker, , , M.P. (1985). The projection of the visual field onto the lateral geniculate nucleus of the ferret. The Journal of Comparative Neurology 241, 210224.Google Scholar
Zhuang, , , J., Stoelzel, , , C.R., Bereshpolova, , , Y., Huff, , , J.M., Hei, , , X., Alonso, , , J.M. & Swadlow, , , H.A. (2013). Layer 4 in primary visual cortex of the awake rabbit: Contrasting properties of simple cells and putative feedforward inhibitory interneurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 33, 1137211389.Google Scholar