Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T16:48:32.511Z Has data issue: false hasContentIssue false

A synaptic signature for ON- and OFF-center parasol ganglion cells of the primate retina

Published online by Cambridge University Press:  27 November 2013

JOANNA D. CROOK
Affiliation:
Department of Biological Structure, University of Washington and the Washington National Primate Research Center (NPRC), Seattle, Washington
ORIN S. PACKER
Affiliation:
Department of Biological Structure, University of Washington and the Washington National Primate Research Center (NPRC), Seattle, Washington
DENNIS M. DACEY*
Affiliation:
Department of Biological Structure, University of Washington and the Washington National Primate Research Center (NPRC), Seattle, Washington
*
*Address correspondence to: Dennis M. Dacey, Department of Biological Structure, University of Washington, Seattle, WA 98195. E-mail: [email protected]

Abstract

In the primate retina, parasol ganglion cells contribute to the primary visual pathway via the magnocellular division of the lateral geniculate nucleus, display ON and OFF concentric receptive field structure, nonlinear spatial summation, and high achromatic temporal–contrast sensitivity. Parasol cells may be homologous to the alpha-Y cells of nonprimate mammals where evidence suggests that N-methyl-D-aspartate (NMDA) receptor-mediated synaptic excitation as well as glycinergic disinhibition play critical roles in contrast sensitivity, acting asymmetrically in OFF- but not ON-pathways. Here, light-evoked synaptic currents were recorded in the macaque monkey retina in vitro to examine the circuitry underlying parasol cell receptive field properties. Synaptic excitation in both ON and OFF types was mediated by NMDA as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate glutamate receptors. The NMDA-mediated current–voltage relationship suggested high Mg2+ affinity such that at physiological potentials, NMDA receptors contributed ∼20% of the total excitatory conductance evoked by moderate stimulus contrasts and temporal frequencies. Postsynaptic inhibition in both ON and OFF cells was dominated by a large glycinergic “crossover” conductance, with a relatively small contribution from GABAergic feedforward inhibition. However, crossover inhibition was largely rectified, greatly diminished at low stimulus contrasts, and did not contribute, via disinhibition, to contrast sensitivity. In addition, attenuation of GABAergic and glycinergic synaptic inhibition left center–surround and Y-type receptive field structure and high temporal sensitivity fundamentally intact and clearly derived from modulation of excitatory bipolar cell output. Thus, the characteristic spatial and temporal–contrast sensitivity of the primate parasol cell arises presynaptically and is governed primarily by modulation of the large AMPA/kainate receptor-mediated excitatory conductance. Moreover, the negative feedback responsible for the receptive field surround must derive from a nonGABAergic mechanism.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, C.J., Percival, K.A., Martin, P.R. & Grunert, U. (2012). Amacrine and bipolar inputs to midget and parasol ganglion cells in marmoset retina. Visual Neuroscience 29, 157168.Google Scholar
Ascher, P. & Nowak, L. (1988). The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurones in culture. The Journal of Physiology 399, 247266.Google Scholar
Borg-Graham, LJ. (2001). The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell. Nature Nueroscience 4, 176–83.Google Scholar
Boos, R., Muller, F. & Wassle, H. (1990). Actions of excitatory amino acids on brisk ganglion cells in the cat retina. Journal of Neurophysiology 64, 13681379.CrossRefGoogle ScholarPubMed
Bormann, J., Hamill, O.P. & Sakmann, B. (1987). Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. The Journal of Physiology 385, 243286.CrossRefGoogle ScholarPubMed
Buldyrev, I., Puthussery, T. & Taylor, W.R. (2012). Synaptic pathways that shape the excitatory drive in an OFF retinal ganglion cell. Journal of Neurophysiology 107, 17951807.Google Scholar
Buldyrev, I. & Taylor, W.R. (2013). Inhibitory mechanisms that generate centre and surround properties in ON and OFF brisk-sustained ganglion cells in the rabbit retina. The Journal of Physiology 591, 303325.Google Scholar
Cafaro, J. & Rieke, F. (2013). Regulation of spatial selectivity by crossover inhibition. The Journal of Neuroscience 33, 63106320.CrossRefGoogle ScholarPubMed
Callaway, E.M. (2005). Structure and function of parallel pathways in the primate early visual system. The Journal of Physiology 566, 1319.CrossRefGoogle ScholarPubMed
Cao, D., Lee, B.B. & Sun, H. (2010). Combination of rod and cone inputs in parasol ganglion cells of the magnocellular pathway. Journal of Vision 10, 4.CrossRefGoogle ScholarPubMed
Cohen, E.D. (1998). Interactions of inhibition and excitation in the light-evoked currents of X type retinal ganglion cells. Journal of Neurophysiology 80, 29752990.CrossRefGoogle ScholarPubMed
Cohen, E.D. (2000). Light-evoked excitatory synaptic currents of X-type retinal ganglion cells. Journal of Neurophysiology 83, 32173229.CrossRefGoogle ScholarPubMed
Cohen, E.D. & Miller, R.F. (1994). The role of NMDA and non-NMDA excitatory amino acid receptors in the functional organization of primate retinal ganglion cells. Visual Neuroscience 11, 317332.Google Scholar
Cohen, E.D., Zhou, Z.J. & Fain, G.L. (1994). Ligand-gated currents of alpha and beta ganglion cells in the cat retinal slice. Journal of Neurophysiology 72, 12601269.CrossRefGoogle ScholarPubMed
Cooper, B., Sun, H. & Lee, B.B. (2012). Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies. Journal of the Optical Society of America. A, Optics, Image Science, and Vision 29, A314A323.Google Scholar
Crook, J.D., Davenport, C.M., Peterson, B.B., Packer, O.S., Detwiler, P.B. & Dacey, D.M. (2009 a). Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina. The Journal of Neuroscience 29, 83728387.CrossRefGoogle ScholarPubMed
Crook, J.D., Manookin, M.B., Packer, O.S. & Dacey, D.M. (2011). Horizontal cell feedback without cone type-selective inhibition mediates “red-green” color opponency in midget ganglion cells of the primate retina. The Journal of Neuroscience 31, 17621772.CrossRefGoogle ScholarPubMed
Crook, J.D., Packer, O.S., Troy, J.B. & Dacey, D.M. (2013). Synaptic mechanisms of color and luminance coding: Rediscovering the X-Y dichotomy in primate retinal ganglion cells. In The New Visual Neurosciences, ed. Chalupa, L.M. & Werner, J.S., pp. 123144. Cambridge, MA: MIT Press.Google Scholar
Crook, J.D., Peterson, B.B., Packer, O.S., Robinson, F.R., Gamlin, P.D., Troy, J.B. & Dacey, D.M. (2008 a). The smooth monostratified ganglion cell: evidence for spatial diversity in the Y-cell pathway to the lateral geniculate nucleus and superior colliculus in the macaque monkey. The Journal of Neuroscience 28, 1265412671.Google Scholar
Crook, J.D., Peterson, B.B., Packer, O.S., Robinson, F.R., Troy, J.B. & Dacey, D.M. (2008 b). Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina. The Journal of Neuroscience 28, 1127711291.CrossRefGoogle ScholarPubMed
Crook, J.D., Troy, J.B., Packer, O.S., Vrieslander, J.D. & Dacey, D.M. (2009 b). Contribution of excitatory and inhibitory conductances to receptive field structure in midget and parasol ganglion cells of macaque monkey retina. Journal of Vision 9(14), 57.Google Scholar
Dacey, D.M. & Brace, S. (1992). A coupled network for parasol but not midget ganglion cells in the primate retina. Visual Neuroscience 9, 279290.CrossRefGoogle Scholar
Dacey, D.M., Crook, J.D. & Packer, O.S. (2013). Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Visual Neuroscience Epub July 29: 1–13.Google Scholar
Dacey, D.M., Packer, O.S., Diller, L.C., Brainard, D.H., Peterson, B.B. & Lee, B.B. (2000). Center surround receptive field structure of cone bipolar cells in primate retina. Vision Research 40, 18011811.CrossRefGoogle ScholarPubMed
Dacey, D.M. & Petersen, M.R. (1992). Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proceedings of the National Academy of Sciences of the United States of America 89, 96669670.CrossRefGoogle ScholarPubMed
Dacey, D.M., Peterson, B.B., Robinson, F.R. & Gamlin, P.D. (2003). Fireworks in the primate retina: In vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37, 1527.Google Scholar
Davenport, C.M., Detwiler, P.B. & Dacey, D.M. (2008). Effects of pH buffering on horizontal and ganglion cell light responses in primate retina: Evidence for the proton hypothesis of surround formation. The Journal of Neuroscience 28, 456464.Google Scholar
Demb, J.B., Haarsma, L., Freed, M.A. & Sterling, P. (1999). Functional circuitry of the retinal ganglion cell’s nonlinear receptive field. The Journal of Neuroscience 19, 97569767.CrossRefGoogle ScholarPubMed
Demb, J.B., Zaghloul, K., Haarsma, L. & Sterling, P. (2001). Bipolar cells contribute to nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian retina. The Journal of Neuroscience 21, 74477454.CrossRefGoogle ScholarPubMed
Derrington, A.M. & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. The Journal of Physiology 357, 219240.Google Scholar
Diamond, J.S. & Copenhagen, D.R. (1993). The contribution of NMDA and non-NMDA receptors to the light-evoked input-output characteristics of retinal ganglion cells. Neuron 11, 725738.CrossRefGoogle Scholar
Enroth-Cugell, C. & Robson, J.G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. The Journal of Physiology 187, 517552.Google Scholar
Fahrenfort, I., Sjoerdsma, T., Ripps, H. & Kamermans, M. (2004). Cobalt ions inhibit negative feedback in the outer retina by blocking hemichannels on horizontal cells. Visual Neuroscience 21, 501511.Google Scholar
Fahrenfort, I., Steijaert, M., Sjoerdsam, T., Vickers, E., Ripps, H., van Asselt, J., Endeman, D., Klooster, J., Numan, R., ten Eikelder, H., von Gersdorff, H. & Kamermans, M. (2009). Hemichannel-mediated and pH-based feedback from horizontal cells to cones in the vertebrate retina. PLoS One 4, 121.Google Scholar
Field, G. & Chichilnisky, E. (2007). Information processing in the primate retina: Circuitry and coding. Annual Review of Neuroscience 30, 130.Google Scholar
Flores-Herr, N., Protti, D.A. & Wassle, H. (2001). Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina. The Journal of Neuroscience 21, 48524863.Google Scholar
Frishman, L.J. & Linsenmeier, R.A. (1982). Effects of picrotoxin and strychnine on non-linear responses of Y-type cat retinal ganglion cells. The Journal of Physiology 324, 347363.CrossRefGoogle ScholarPubMed
Grünert, U. (2000). Distribution of GABA and glycine receptors on bipolar and ganglion cells in the mammalian retina. Microscopy Research and Technique 50, 130140.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Grünert, U. & Ghosh, K.K. (1999). Midget and parasol ganglion cells of the primate retina express the a1 subunit of the glycine receptor. Visual Neuroscience 16, 957966.Google Scholar
Grünert, U., Haverkamp, S., Fletcher, E.L. & Wassle, H. (2002). Synaptic distribution of ionotropic glutamate receptors in the inner plexiform layer of the primate retina. The Journal of Comparative Neurology 447, 138151.CrossRefGoogle ScholarPubMed
Hirasawa, H. & Kaneko, A. (2003). pH changes in the invaginating synaptic cleft mediate feedback from horizontal cells to cone photoreceptors by modulating Ca2+ channels. The Journal of General Physiology 122, 657671.Google Scholar
Hochstein, S. & Shapley, R.M. (1976). Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. The Journal of Physiology 262, 265284.Google Scholar
Ichinose, T. & Lukasiewicz, P.D. (2005). Inner and outer retinal pathways both contribute to surround inhibition of salamander ganglion cells. The Journal of Physiology 565, 517535.CrossRefGoogle ScholarPubMed
Jacoby, R.A. & Marshak, D.W. (2000). Synaptic connections of DB3 diffuse bipolar cell axons in macaque retina. The Journal of Comparative Neurology 416, 1929.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Kalbaugh, T.L., Zhang, J. & Diamond, J.S. (2009). Coagonist release modulates NMDA receptor subtype contributions at synaptic inputs to retinal ganglion cells. The Journal of Neuroscience 29, 14691479.Google Scholar
Kamermans, M., Fahrenfort, I., Schultz, K., Janssen-Bienhold, U., Sjoerdsma, T. & Weiler, R. (2001). Hemichannel-mediated inhibition in the outer retina. Science 292, 11781180.Google Scholar
Kaplan, E. & Benardete, E. (2001). The dynamics of primate retinal ganglion cells. Progress in Brain Research 134, 1734.CrossRefGoogle ScholarPubMed
Kaplan, E., Lee, B.B. & Shapley, R.M. (1990). New views of primate retinal function. Progress in Retinal and Eye Research 9, 273336.Google Scholar
Kerchner, G.A. & Nicoll, R.A. (2008). Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nature Reviews. Neuroscience 9, 813825.Google Scholar
Kumar, S.S. & Huguenard, J.R. (2003). Pathway-specific differences in subunit composition of synaptic NMDA receptors on pyramidal neurons in neocortex. The Journal of Neuroscience 23, 1007410083.Google Scholar
Lee, B.B. (2011). Visual pathways and psychophysical channels in the primate. The Journal of Physiology 589, 4147.Google Scholar
Lee, B.B., Martin, P.R. & Grunert, U. (2010). Retinal connectivity and primate vision. Progress in Retinal and Eye Research 29, 622639.Google Scholar
Lee, B.B., Martin, P.R. & Valberg, A. (1988). The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. The Journal of Physiology 404, 323347.Google Scholar
Lee, B.B., Pokorny, J., Smith, V.C., Martin, P.R. & Valberg, A. (1990). Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. Journal of the Optical Society of America 7, 22232236.Google Scholar
Lee, B.B., Sun, H. & Zucchini, W. (2007). The temporal properties of the response of macaque ganglion cells and central mechanisms of flicker detection. Journal of Vision 7, 1 11 16.Google Scholar
Lennie, P. & Movshon, J.A. (2005). Coding of color and form in the geniculostriate visual pathway (invited review). Journal of the Optical Society of America. A, Optics, Image Science, and Vision 22, 20132033.Google Scholar
Leventhal, A.G., Rodieck, R.W. & Dreher, B. (1981). Retinal ganglion cell classes in the old world monkey: Morphology and central projections. Science 213, 11391142.Google Scholar
Lin, B., Martin, P.R., Solomon, S.G. & Grunert, U. (2000). Distribution of glycine receptor subunits on primate retinal ganglion cells: a quantitative analysis. The European Journal of Neuroscience 12, 41554170.Google Scholar
Macri, J., Martin, P.R. & Grunert, U. (2000). Distribution of the alpha1 subunit of the GABA(A) receptor on midget and parasol ganglion cells in the retina of the common marmoset Callithrix jacchus. Visual Neuroscience 17, 437448.CrossRefGoogle ScholarPubMed
Manookin, M.B., Beaudoin, D.L., Ernst, Z.R., Flagel, L.J. & Demb, J.B. (2008). Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. The Journal of Neuroscience 28, 41364150.Google Scholar
Manookin, M.B., Weick, M., Stafford, B.K. & Demb, J.B. (2010). NMDA receptor contributions to visual contrast coding. Neuron 67, 280293.Google Scholar
Massey, S.C. & Miller, R.F. (1990). N-methyl-D-aspartate receptors of ganglion cells in rabbit retina. Journal of Neurophysiology 63, 1630.Google Scholar
McMahon, M.J., Packer, O.S. & Dacey, D.M. (2004). The classical receptive field surround of primate parasol ganglion cells is mediated primarily by a non-GABAergic pathway. The Journal of Neuroscience 24, 37363745.Google Scholar
Mittman, S., Taylor, W.R. & Copenhagen, D.R. (1990). Concomitant activation of two types of glutamate receptor mediates excitation of salamander retinal ganglion cells. The Journal of Physiology 428, 175197.Google Scholar
Molnar, A., Hsueh, H.A., Roska, B. & Werblin, F.S. (2009). Crossover inhibition in the retina: Circuitry that compensates for nonlinear rectifying synaptic transmission. Journal of Computational Neuroscience 27, 569590.Google Scholar
Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B. & Seeburg, P.H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529540.Google Scholar
Murphy, G.J. & Rieke, F. (2006). Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron 52, 511524.Google Scholar
Packer, O.S., Verweij, J., Li, P.H., Schnapf, J.L. & Dacey, D.M. (2010). Blue-yellow opponency in primate S cone photoreceptors. The Journal of Neuroscience 30, 568572.Google Scholar
Paoletti, P. (2011). Molecular basis of NMDA receptor functional diversity. The European Journal of Neuroscience 33, 13511365.Google Scholar
Peichl, L. (1991). Alpha ganglion cells in mammalian retinae: Common properies, species differences, and some comments on other ganglion cells. Visual Neuroscience 7, 155169.Google Scholar
Perry, V.H., Oehler, R. & Cowey, A. (1984). Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12, 11011123.Google Scholar
Pokorny, J., Smithson, H. & Quinlan, J. (2004). Photostimulator allowing independent control of rods and the three cone types. Visual Neuroscience 21, 263267.CrossRefGoogle ScholarPubMed
Sagdullaev, B.T., McCall, M.A. & Lukasiewicz, P.D. (2006). Presynaptic inhibition modulates spillover, creating distinct dynamic response ranges of sensory output. Neuron 50, 923935.Google Scholar
Schwartz, G.W., Okawa, H., Dunn, F.A., Morgan, J.L., Kerschensteiner, D., Wong, R.O. & Rieke, F. (2012). The spatial structure of a nonlinear receptive field. Nature Neuroscience 15, 15721580.Google Scholar
Shapley, R. & Perry, V.H. (1986). Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neuroscience 9, 229235.Google Scholar
Silveira, L.C., Saito, C.A., Lee, B.B., Kremers, J., da Silva Filho, M., Kilavik, B.E., Yamada, E.S. & Perry, V.H. (2004). Morphology and physiology of primate M- and P-cells. Progress in Brain Research 144, 2146.Google Scholar
Solomon, S.G., Martin, P.R., White, A.J., Ruttiger, L. & Lee, B.B. (2002). Modulation sensitivity of ganglion cells in peripheral retina of macaque. Vision Research 42, 28932898.Google Scholar
Spitzer, H. & Hochstein, S. (1985). Simple- and complex-cell response dependences on stimulation parameters. Journal of Neurophysiology 53, 12441265.Google Scholar
Taylor, W.R. (1999). TTX attenuates surround inhibition in rabbit retinal ganglion cells. Visual Neuroscience 16, 285290.Google Scholar
Taylor, WR, Vaney, DI. (2002). Diverse synaptic mechanisms generate direction selectivity in the rabbit retina. Journal of Neuroscience 22(17), 77127720.Google Scholar
Thoreson, W.B. & Mangel, S.C. (2012). Lateral interactions in the outer retina. Progress in Retinal and Eye Research 31, 407441.Google Scholar
van Wyk, M., Wassle, H. & Taylor, W.R. (2009). Receptive field properties of ON- and OFF-ganglion cells in the mouse retina. Visual Neuroscience 26, 297308.Google Scholar
Velte, T.J., Yu, W. & Miller, R.F. (1997). Estimating the contributions of NMDA and non-NMDA currents to EPSPs in retinal ganglion cells. Visual Neuroscience 14, 9991014.Google Scholar
Venkataramani, S. & Taylor, W.R. (2010). Orientation selectivity in rabbit retinal ganglion cells is mediated by presynaptic inhibition. The Journal of Neuroscience 30, 1566415676.Google Scholar
Verweij, J., Hornstein, E.P. & Schnapf, J.L. (2003). Surround antagonism in macaque cone photoreceptors. The Journal of Neuroscience 23, 1024910257.Google Scholar
Verweij, J., Kamermans, M. & Spekreijse, H. (1996). Horizontal cells feed back to cones by shifting the cone calcium-current activation range. Vision Research 36, 39433953.Google Scholar
Victor, J.D. & Shapley, R.M. (1979). The nonlinear pathway of Y ganglion cells in the cat retina. The Journal of General Physiology 74, 671687.Google Scholar
Vigh, J. & Witkovsky, P. (1999). Sub-millimolar cobalt selectively inhibits the receptive field surround of retinal neurons. Visual Neuroscience 16, 159168.Google Scholar
Watanabe, M. & Rodieck, R.W. (1989). Parasol and midget ganglion cells of the primate retina. The Journal of Comparative Neurology 289, 434454.Google Scholar
Werblin, F.S. (2010). Six different roles for crossover inhibition in the retina: correcting the nonlinearities of synaptic transmission. Visual Neuroscience 27, 18.Google Scholar
Werblin, F.S. (2011). The retinal hypercircuit: a repeating synaptic interactive motif underlying visual function. The Journal of Physiology 589, 36913702.Google Scholar
Wyllie, D.J., Livesey, M.R. & Hardingham, G.E. (2013). Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 74, 417.Google Scholar
Zeck, G.M., Xiao, Q. & Masland, R.H. (2005). The spatial filtering properties of local edge detectors and brisk-sustained retinal ganglion cells. The European Journal of Neuroscience 22, 20162026.Google Scholar
Zhang, J. & Diamond, J.S. (2009). Subunit- and pathway-specific localization of NMDA receptors and scaffolding proteins at ganglion cell synapses in rat retina. The Journal of Neuroscience 29, 42744286.Google Scholar