Published online by Cambridge University Press: 02 June 2009
There are many regional differences in cell morphology and neurochemistry in the retina. This study examined a specialized population of neuropeptide Y- and glucagon-like immunoreactive amacrine cells in the peripheral retina of the turtle. Some of the dendritic processes from these peptidergic amacrine cells formed a dense circumferentially oriented nerve fiber plexus which ran parallel to the ora serrata. Collaterals from this plexus projected into and innervated the nonpigmented ciliary epithelium in the pars plana region of the ciliary body. Electron microscopy revealed that the neuropeptide Y- and glucagon-like immunoreactive processes in the ciliary epithelium contained many labeled, large dense-cored vesicles. Small crystals of lipid-soluble fluorescent dye were implanted in the retina near the ora serrata in fixed retinal tissue to search for other peripheral retinal specializations. Numerous thick and thin cell processes oriented parallel to the ora serrata were labeled in the retina by the dye. In addition, many dye-labeled somata with circumferentially oriented dendritic arborizations were seen in the extreme periphery of the retina. Many of these dye-labeled cells and processes were clearly not associated with the neuropeptide Y- and glucagon-like immunoreactive cells described above. This study has shown that some peptidergic neurons in the peripheral retina have a unique morphology in comparison to more centrally located cells. The function of these specialized peripheral cells is not established, but the innervation of the ciliary epithelium by peptidergic amacrine cells suggests that they may be involved in control of aqueous inflow.