Article contents
“Small-tufted” ganglion cells and two visual systems for the detection of object motion in rabbit retina
Published online by Cambridge University Press: 06 October 2005
Abstract
Small-tufted (ST) ganglion cells of rabbit retina are divided into eight types based upon morphology, branching pattern, level of dendritic stratification, and quantitative dimensional analysis. Only one of these types has been previously characterized in Golgi preparations, and four may be discerned in the work of others. Given their small dendritic-field size, and assuming uniform mosaics of each across the retina, ST cells comprise about 45% of all rabbit ganglion cells, and are therefore of major functional significance. Four ST cells occur as two paramorphic (a/b) pairs, and thus belong to class III, as previously defined. Four branch in sublaminae a and b of the inner plexiform layer (IPL) and therefore belong to class IV. ST cells have small cell bodies 10–15 μm in diameter, small axons 0.7–1.3 μm in diameter, and small dendritic-field diameters, 40–110 μm in mid-visual streak. The dendrites of ST cells are highly branched, and bear spines and appendages of varying length, but vary from type to type. Class III.2 cells and class III.3 cells are partly bistratified. Class IV small-tufted cells differ characteristically in multiple features of dendritic branching and stratification. Class III small-tufted cells apparently have concentric (ON-center and OFF-center) receptive fields and may have “sluggish-transient” (class III.2) and “sluggish-sustained” (class III.3) physiology. Class IV cells include the “local-edge-detector” (LED) (class IVst1), and are all expected to give ON–OFF responses to small, centered, slowly moving visual stimuli. Based upon systematic variation in dendritic-field size across the retina, ST cells may be divided into two groups. In this “universal prey” species, they may belong to two systems of motion detection, typified by ON–OFF directionally selective and LED ganglion cells, respectively, specialized for detection of rapid motion at the horizon for land-based predators, and slow motion for airborne predators.
- Type
- Research Article
- Information
- Copyright
- 2005 Cambridge University Press
References
REFERENCES
- 15
- Cited by