Published online by Cambridge University Press: 05 April 2005
Vernier thresholds are determined by luminance rather than chromatic contrast when both are present in vernier targets. The role of luminance and chromatic mechanisms in vernier performance under equiluminant conditions remains uncertain. Temporal summation functions for vernier thresholds with luminance and red–green equiluminant gratings were compared to those for detection thresholds with similar stimuli. Vernier thresholds showed similar temporal summation for luminance and chromatic gratings, which is consistent with a single mechanism underlying vernier performance in the two conditions. However, detection thresholds showed a shorter temporal summation duration for luminance gratings than for chromatic gratings, which suggests that two different mechanisms underlie detection thresholds. Analysis of physiological data supports the hypothesis that the frequency-doubled response of ganglion cells in the magnocellular pathway can provide accurate spatiotemporal information for vernier performance at equiluminance.