Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T17:57:17.321Z Has data issue: false hasContentIssue false

Retinoids in the lateral eye of Limulus: Evidence for a retinal photoisomerase

Published online by Cambridge University Press:  02 June 2009

W. Clay Smith
Affiliation:
Department of Biology, Yale University, New Haven
Matthew A. Friedman
Affiliation:
Department of Biology, Yale University, New Haven
Timothy H. Goldsmith
Affiliation:
Department of Biology, Yale University, New Haven

Abstract

The lateral eyes of the horseshoe crab Limulus contain about 80 pmoles of retinal, 30 pmoles of retinol, and 4 pmoles of retinyl esters. More all-trans than 11-cis isomer was found in each category of retinoid. No consistent changes were observed in the amounts of retinal, retinol, or retinyl esters as a function of time of day. No 3,4-dehydro- nor hydroxyretinoids were found.

Aqueous extracts of the eye support the stereospecific formation of 11 -cis retinal from a11-trans retinal when irradiated with light. The reaction requires a protein that is apparently recognized by polyclonal antibodies raised against the retinal photoisomerase extracted from honeybee eyes. The isomerase is able to use as substrate either endogenous all-trans retinal in the extract or retinal supplied in vesicles of phospholipid. The spectral efficiency of this isomerization has λmax at 550 nm, but the spectrum appears too narrow compared with the absorbance spectrum of retinoid-binding proteins, probably because of inadequate correction for nonspecific isomerization at short wavelengths.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arikawa, K., Morikawa, Y., Suzuki, T. & Eguchi, E. (1988). Intrinsic control of rhabdom size and rhodopsin content in the crab compound eye by a circadian biological clock. Experientia 44, 219220.CrossRefGoogle ScholarPubMed
BarlowR.B., JR. R.B., JR., Chamberlain, S.C. & Lehman, H.K. (1989). Circadian rhythms in the invertebrate retina. In Facets of Vision, ed. Stavenga, D.G. & Hardie, R.C., pp. 258280. Berlin-Heidelberg-New York: Springer-Verlag.Google Scholar
BarlowR.B., Jr. R.B., Jr., Chamberlain, S.C. & Levinson, J.Z. (1980). Limulus brain modulates the structure and function of the lateral eyes. Science 210, 10371039.CrossRefGoogle ScholarPubMed
Battelle, B.-A. (1984). Efferent innervation to Limulus eyes. Trends in Neuroscience 7, 277282.CrossRefGoogle Scholar
Bernhard, C.G. & Ottoson, D. (1960). Studies on the relation between the pigment migration and the sensitivity changes during dark adaptation in diurnal and nocturnal Lepidoptera. Journal of General Physiology 44, 205215.CrossRefGoogle ScholarPubMed
Burnside, B. & Laties, A.M. (1979). Pigment movement and cellular contractility in the retinal pigment epithelium. In The Retinal Pigment Epithelium, ed. Zinn, K.M. & Marmor, M.F., pp. 175191. Cambridge, Massachusetts: Harvard University Press.Google Scholar
Chamberlain, S.C. & BarlowR.B., Jr. R.B., Jr. (1979). Light and efferent activity control rhabdom turnover in Limulus photoreceptors. Science 206, 361363.CrossRefGoogle ScholarPubMed
Chamberlain, S.C. & BarlowR.B., Jr. R.B., Jr. (1984). Transient membrane shedding in Limulus photoreceptors: control mechanisms under natural lighting. Journal of Neuroscience 4, 27922810.CrossRefGoogle ScholarPubMed
Chamberlain, S.C. & BarlowR.B., Jr. R.B., Jr. (1987). Control of structural rhythms in the lateral eye of Limulus: interactions of natural lighting and circadian efferent activity. Journal of Neuroscience 7, 21352144.CrossRefGoogle ScholarPubMed
Daw, N.W. & Pearlman, A.L. (1974). Pigment migration and adaptation in the eye of the squid, Loligo pealei. Journal of General Physiology 63, 2236.CrossRefGoogle ScholarPubMed
Fain, G.L. & Matthews, H.R. (1990). Calcium and the mechanism of light adaptation in vertebrate photoreceptors. Trends in Neuroscience 13, 378384.CrossRefGoogle ScholarPubMed
Geysen, J. (1988). Desorption of antibodies for reuse of blots. In CRC Handbook of Immunoblotting of Proteins, ed. Bjerrum, O.J. & Heecaard, N.H.H. pp. 213220. Boca Raton, Florida: CRC Press Inc.Google Scholar
Groenenduk, G.W.T., Degrip, W.J. & Daemen, F.J.M. (1980). Quantitative determination of retinals with complete retention of their geometric configuration. Biochimica et Biophysica Ada 617, 430438.CrossRefGoogle Scholar
Hamdorf, K. & Schwemer, J. (1975). Photoregeneration and the adaptation process in insect photoreceptors. In Photoreceptor Optics, ed. Snyder, A. & Menzel, R., pp. 263289. Berlin-Heidelberg-New York: Springer-Verlag.CrossRefGoogle Scholar
Hara, T. & Hara, R. (1972). Cephalopod retinochrome. In Handbook of Sensory Physiology, Vol. VII/I, ed. Dartnall, H.J.A., pp. 720746. Berlin-Heidelberg-New York: Springer-Verlag.Google Scholar
Hartline, H.K. & Ratliff, F. (1957). Inhibitory interaction of receptor units in the eye of Limulus. Journal of General Physiology 40, 357376.CrossRefGoogle ScholarPubMed
HöGlund, G. (1966). Pigment migration, light screening and receptor sensitivity in the compound eye of nocturnal Lepidoptera. Ada Physiologica Scandinavica (Suppl.) 69, 156.Google Scholar
Hubbard, R. & Wald, G. (1960). Visual pigment of the horseshoe crab, Limulus polyphemus. Nature 186, 212215.CrossRefGoogle ScholarPubMed
Isono, K., Tanimura, T., Oda, Y. & Tsukahara, Y. (1988). Dependency on light and vitamin A derivatives of the biogenesis of 3-hydroxyretinal and visual pigment in the compound eyes of Drosophila melanogaster. Journal of General Physiology 92, 587600.CrossRefGoogle ScholarPubMed
Kier, C.K. & Chamberlain, S.C. (1990). Dual controls for screening pigment movement in photoreceptors of the Limulus lateral eye: circadian efferent input and light. Visual Neuroscience 4, 237255.CrossRefGoogle ScholarPubMed
Paulsen, R. & Schwemer, J. (1983). Biogenesis of blowfly photoreceptor membranes is regulated by 11-cis-retinal. European Journal of Biochemistry 137, 609614.CrossRefGoogle ScholarPubMed
Pepe, I.M. & Cugnoli, C. (1980). Isolation and characterization of a water-soluble photopigment from honeybee compound eye. Vision Research 20, 97102.CrossRefGoogle ScholarPubMed
Pepe, I.M., Schwemer, J. & Paulsen, R. (1982). Characteristics of retinal-binding proteins from the honeybee retina. Vision Research 22, 775781.CrossRefGoogle ScholarPubMed
Schwemer, J. (1989). Visual pigments of compound eyes—structure, photochemistry, and regeneration. In Facets of Vision, ed. Stavenga, D.G. & Hardie, R.C., pp. 112133. Berlin-Heidelberg-New York: Springer-Verlag.CrossRefGoogle Scholar
Schwemer, J., Pepe, I.M., Paulsen, R. & Cugnoli, C. (1984). Lightinduced transcis isomerization of retinal by a protein from the honeybee retina. Journal of Comparative Physiology A 154, 549554.CrossRefGoogle Scholar
Seki, T., Ito, M. & Tsukida, K. (1988). Retinoid and carotenoid composition in the compound eye of insects. In Molecular Physiology of Retinal Proteins, ed. Hara, T., pp. 437438. Japan: Yamada Science Foundation.Google Scholar
Smith, W.C. & Goldsmith, T.H. (1991a). The role of retinal photoisomerase in the visual cycle of the honeybee. Journal of General Physiology 97, 143165.CrossRefGoogle ScholarPubMed
Smith, W.C. & Goldsmith, T.H. (1991b). Localization of retinal photoisomerase in the compound eye of the honeybee. Visual Neuroscience 7, 237249.CrossRefGoogle ScholarPubMed
Stein, P.J., Brammer, J.D. & Ostroy, S.E. (1979). Renewal of opsin in the photoreceptor cells of the mosquito. Journal of General Physiology 74, 565582.CrossRefGoogle ScholarPubMed
Suzuki, T., Maeda, Y., Toh, Y. & Eguchi, E. (1988). Retinyl and 3-dehydroretinyl esters in the crayfish retina. Vision Research 28, 10611070.CrossRefGoogle ScholarPubMed
Walcott, B. (1969). Movement of retinula cells in insect eyes on light adaptation. Nature 223, 971972.CrossRefGoogle ScholarPubMed
Wald, G. & Burg, S.P. (1957). The vitamin A of the lobster. Journal of General Physiology 40, 609625.CrossRefGoogle ScholarPubMed