Published online by Cambridge University Press: 02 June 2009
The relative timing of a number of events during the development of the visual system has recently been suggested to be consistent across a number of mammalian species (Dreher & Robinson, 1988). Some conflicting reports, however, had suggested that the precocial guinea pig might represent an exception to the generalized scheme. A quantitative study was thus carried out on the development of the optic nerve and retina of the guinea pig. Consistent with the prediction of a stable relative time course of mammalian visual development, axons and growth cones were found in the optic stalk from the 24th postconceptional day (40% of the period from conception to eye opening —the cecal period), the peak number of axons was observed on the 32nd postconceptional day (56% of the cecal period), and the phase of rapid axonal loss extended to the 39th and 42nd postconceptional days (68–74% of the cecal period). The number of axons in the adult optic nerve (117,000) represented about 37% of the peak number of axons. Additional observations indicated that during development of the optic nerve the mean axonal diameter increased approximately threefold from 0.31 μm to 1.06 μm. As in other mammals studied so far, myelination was first noted after the period of rapid axonal loss and continued until in the adult 97% of axons were found to be myelinated. In the retina, the presence of pyknotic profiles in the ganglion cell layers extends throughout the periods of loss of the optic nerve axons. Finally, the presence of pyknotic profiles in the amacrine sublayer suggest that in the guinea pig, as in other mammalian species, there is a loss of displaced amacrine cells as well as ganglion cells from the ganglion cell layer.