Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T07:12:18.594Z Has data issue: false hasContentIssue false

Recoverin immunoreactivity in mammalian cone bipolar cells

Published online by Cambridge University Press:  02 June 2009

Ann H. Milam
Affiliation:
Department of Ophthalmology, University of Washington, Seattle
Dennis M. Dacey
Affiliation:
Department of Biological Structure, University of Washington, Seattle
Alexander M. Dizhoor
Affiliation:
Department of Biochemistry and the Howard Hughes Medical Institute, University of Washington, Seattle A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia

Abstract

Human, macaque monkey, and rat retinas were immunostained with a polyclonal antibody preparation against purified recoverin, a 23-kD calcium-binding protein isolated from bovine retina that localizes to rods and cones (Dizhoor et al., 1991). In addition to immunoreactive photoreceptors, we have identified subpopulations of recoverin-positive bipolar cells in all three species. Results from immunostaining with progressive dilutions of anti-recoverin and preadsorption of the antibody with a dilution series of purified recoverin showed that photoreceptors and bipolar cells had similar affinities for the antibody and suggested that the molecule recognized by the antibody in both cell types is recoverin. Immunoreactivity for recoverin and protein kinase C, a selective marker for all rod bipolar cells, was found in separate bipolar cell populations. Recoverin immunoreactivity is therefore a characteristic of certain cone bipolar cell types.

In rat retina, anti-recoverin labeled two morphologically distinct subpopulations of cone bipolar cells whose axonal arbors stratified at different depths in the inner plexiform layer (IPL). The bipolar cells labeled with anti-recoverin did not correspond to those that were reactive for calbindin, another cone bipolar cell marker.

Human and monkey retinas also had two populations of cone bipolar cells that were recoverin-positive. One population showed a distinct pattern of narrow bistratification at the outer border of the IPL and a regular mosaic arrangement of its axonal arbors, suggesting that the entire population of a single cone bipolar type was labeled. Cell density, dendritic morphology, and axonal-field size and stratification indicate that anti-recoverin selectively stains the flat midget (presumed OFF-center) cone bipolar cell type observed previously in Golgi preparations. By contrast the second bipolar cell population had axonal stratification in the inner half of the IPL and showed an unusual but consistent morphology and spatial distribution. Individual cells were intensely stained but were present at an extremely low density (~2−5 cells/mm2). These cells had multibranched dendritic trees characteristic of the diffuse bipolar cell class, but very small axonal fields in the size range of the midget bipolar class. Neither of the two recoverin-positive bipolar cell types in monkey was labeled with anti-calbindin or anti-cholecystokinin. An antibody preparation against bovine pineal hydroxyindole-O-methyltransferase (HIOMT) labeled photoreceptors and bipolar cells that closely resembled the recoverin-positive bipolar cells in human and rat retinas. Preadsorption of this antibody preparation with purified recoverin abolished immunostaining of the bipolar cells, suggesting that the anti-HIOMT preparation contains antibodies against recoverin, which is known to be present in the bovine pineal gland.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berrebi, A.S., Oberdick, J., Sangameswaran, L., Christakos, S., Morgan, J.I. & Mugnaini, E. (1991). Cerebellar Purkinje cell markers are expressed in retinal bipolar neurons. Journal of Comparative Neurology 308, 630649.CrossRefGoogle ScholarPubMed
Boycott, B.B. & Dowling, J.E. (1969). Organization of the primate retina: Light microscopy. Philosophical Transactions of the Royal Society B (London) 255, 109184.Google Scholar
Boycott, B.B. & Hopkins, J.M. (1991). Cone bipolar cells and cone synapses in the primate retina. Visual Neuroscience 7, 4960.CrossRefGoogle ScholarPubMed
Boycott, B.B. & Wässle, H. (1991). Morphological classification of bipolar cells of the primate retina. European Journal of Neuroscience 3, 10691088.CrossRefGoogle ScholarPubMed
Calkins, D.J., Schein, S.J., Tsukamoto, Y., Masarachia, P. & Sterling, P. (1992). Parallel pathways to midget ganglion cells in macaque fovea. Investigative Ophthalmology and Visual Science 33, 1173.Google Scholar
Cohen, E. & Sterling, P. (1986). Accumulation of [3H]-glycine by cone bipolar neurons in the cat retina. Journal of Comparative Neurology 250, 17.CrossRefGoogle ScholarPubMed
Cohen, E. & Sterling, P. (1990). Demonstration of cell types among cone bipolar neurons of cat retina. Philosophical Transactions of the Royal Society B (London) 330, 305321.Google ScholarPubMed
Copenhagen, D.R., Ashmore, J.F. & Schnapf, J. (1983). Kinetics of synaptic transmission from photoreceptors to horizontal and bipolar cells in turtle retina. Vision Research 23, 363369.CrossRefGoogle ScholarPubMed
Dizhoor, A.M., Ray, S., Kumar, S., Niemi, G., Spencer, M., Brolly, D., Walsh, K.A., Philipov, P.P., Hurley, J.B. & Stryer, L. (1991). Recoverin, a calcium sensitive activator of retinal rod guanylate cyclase. Science 251, 915918.CrossRefGoogle ScholarPubMed
Ehinger, B., Ottersen, O.P., Storm-Mathisen, J. & Dowling, J.E. (1988). Bipolar cells in the turtle retina are strongly immunoreactive for glutamate. Proceedings of the National Academy of Sciences of the U.S.A. 85, 83218325.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. Jr, (1981). Functional architecture of cone bipolar cells in mammalian retina. Vision Research 21, 15591563.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. Jr, & Kolb, H. (1976). Structural basis for ON- and OFF-center responses in retinal ganglion cells. Science 194, 193195.CrossRefGoogle ScholarPubMed
Graferath, U., Grünert, U., & Wässle, H. (1990). Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. Journal of Comparative Neurology 301, 433442.CrossRefGoogle Scholar
Grünert, U. & Martin, P.R. (1991). Rod bipolar cells in the macaque monkey retina: Immunoreactivity and connectivity. Journal of Neuroscience 11, 27422758.CrossRefGoogle ScholarPubMed
Grünert, U. & Wässle, H. (1990). GABA-like immunoreactivity in the macaque monkey retina: A light and electron microscopic study. Journal of Comparative Neurology 297, 509524.CrossRefGoogle ScholarPubMed
Hamano, K., Kiyama, H., Emson, P.C., Manabe, R., Nakauchi, M. & Tohyama, M. (1990). Localization of two calcium-binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina. Journal of Comparative Neurology 302, 417424.CrossRefGoogle ScholarPubMed
Hatakenaka, S., Kiyama, H., Tohyama, M. & Miki, N. (1985). Immunohistochemical localization of chick retinal 24 kDalton protein (visinin) in various vertebrate retinae. Brain Research 311, 209215.CrossRefGoogle Scholar
Hendrickson, A.E., Koontz, M., Pourcho, R.G., Sarthy, P.V. & Goebel, D.J. (1988). Localization of glycine-containing neurons in the Macaca monkey retina. Journal of Comparative Neurology 273, 473487.CrossRefGoogle ScholarPubMed
Hopkins, J.M. & Boycott, B.B. (1992). Synaptic contacts of a two-cone flat bipolar cell in a primate retina. Visual Neuroscience 8, 379384.CrossRefGoogle Scholar
Hurley, J.B. (1992). Signal transduction enzymes of vertebrate photoreceptors. Journal of Bioenergetics and Biomembranes 24, 219226.CrossRefGoogle ScholarPubMed
Kawamura, S. & Murakami, M. (1991). Calcium-dependent regulation of cyclic GMP phosphodiesterase by a protein from frog retinal rods. Nature 349, 420423.CrossRefGoogle ScholarPubMed
Koch, K-W. & Stryer, L. (1988). Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 334, 6466.CrossRefGoogle ScholarPubMed
Kolb, H. (1970). Organization of the outer plexiform layer of the primate retina. Philosophical Transactions of the Royal Society B (London) 258, 261283.Google ScholarPubMed
Kolb, H., Nelson, R. & Mariani, A. (1981). Amacrine cells, bipolar cells, and ganglion cells of the cat retina: A Golgi study. Vision Research 21, 10811114.CrossRefGoogle ScholarPubMed
Kolb, H. & Dekorver, L. (1991). Midget ganglion cells of the parafovea of the human retina: A study by electron microscopy of serial sections. Journal of Comparative Neurology 303, 617636.CrossRefGoogle Scholar
Kouyama, N. & Marshak, D.W. (1992). Bipolar cells specific for blue cones in the macaque retina. Journal of Neuroscience 12, 12331252.CrossRefGoogle ScholarPubMed
Lambrecht, H.-G. & Koch, K.-W. (1991). A 26 kD calcium binding protein from bovine rod outer segments as modulator of photoreceptor guanylate cyclase. European Molecular Biology Organization Journal 10, 793798.CrossRefGoogle ScholarPubMed
Mariani, A.P. (1983). Giant bistratified bipolar cells in monkey retina. Anatomical Record 206, 215220.CrossRefGoogle Scholar
Mariani, A.P. (1984). Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature 308, 184186.CrossRefGoogle ScholarPubMed
Marshak, D.W., Aldrich, L.B., Valle, J.Del & Yamada, T. (1990). Localization of immunoreactive cholecystokinin precursor to amacrine cells and bipolar cells of the macaque monkey retina. Journal of Neuroscience 10, 30453055.CrossRefGoogle ScholarPubMed
Martin, P.R. & Grünert, U. (1991). Immunoreactivity of rod and cone bipolar cells in the macaque monkey retina. Investigative Ophthalmology and Visual Science 32, 991 (Abstract #1587).Google Scholar
McGuire, B.A., Stevens, J.K. & Sterling, P. (1984). Microcircuitry of bipolar cells in cat retina. Journal of Neuroscience 4, 29202938.CrossRefGoogle ScholarPubMed
Milam, A.H., De Leeuw, A.M., Gaur, V.P. & Saari, J.C. (1990). Immunolocalization of cellular retinoic acid binding protein to Müller cells and/or a subpopulation of GABA-positive amacrine cells in retinas of different species. Journal of Comparative Neurology 296, 123129.CrossRefGoogle ScholarPubMed
Nawy, S. & Jahr, C.E. (1990). Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346, 269271.CrossRefGoogle ScholarPubMed
Nawy, S. & Jahr, C.E. (1991). cGMP-gated conductance in retinal bipolar cells is suppressed by the photoreceptor transmitter. Neuron 7, 677683.CrossRefGoogle ScholarPubMed
Negishi, K., Kato, S. & Teranishi, T. (1988). Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas. Neuroscience Letters 94, 247252.CrossRefGoogle ScholarPubMed
Nelson, R. & Kolb, H. (1983). Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Research 23, 11831195.CrossRefGoogle ScholarPubMed
Onada, N. (1988). A monoclonal antibody specific for a subpopulation of retinal bipolar cells in vertebrates. Neuroscience Research 8, 113125.Google Scholar
Onada, N. & Fujita, S.C. (1987). A monoclonal antibody specific for a subpopulation of retinal bipolar cells in the frog and other vertebrates. Brain Research 416, 359363.CrossRefGoogle Scholar
Packer, O., Hendrickson, A.E. & Curcio, C.A. (1989). Photoreceptor topography of the retina in the adult pigtail Macaque (Macaca nemestrina). Journal of Comparative Neurology 288, 165183.CrossRefGoogle ScholarPubMed
Pasteels, B., Rogers, J., Blachter, F. & Pochet, R. (1990). Calbindin and calretinin localization in retina from different species. Visual Neuroscience 5, 116.CrossRefGoogle ScholarPubMed
Polans, A.S., Buczylko, J., Crabb, J. & Palczewski, K. (1991). Photoreceptor calcium binding protein is recognized by autoantibodies obtained from patients with cancer-associated retinopathy. Journal of Cell Biology 112, 981989.CrossRefGoogle ScholarPubMed
Polyak, S.L. (1941). The Retina. Chicago, Illinois: University of Chicago Press.Google Scholar
Pourcho, R.G. & Goebel, D.J. (1987). A combined Golgi and auto-radiographic study of 3H-glycine-accumulating cone bipolar cells in the cat retina. Journal of Neuroscience 7, 11781188.CrossRefGoogle Scholar
Shiells, R.A. & Falk, G. (1992 a). The glutamate-receptor linked cGMP cascade of retinal ON-bipolar cells is pertussis and cholera toxin-sensitive. Proceedings of the Royal Society B (London) 247, 1720.Google ScholarPubMed
Shiells, R.A. & Falk, G. (1992 b). Properties of the cGMP-activated channel of retinal on-bipolar cells. Proceedings of the Royal Society B (London) 247, 2125.Google ScholarPubMed
Verstappen, A., Parmentler, M., Chirnoaga, M., Lawson, D.E.M., Pasteels, J.L. & Pochet, R. (1986). Vitamin D-dependent calcium binding protein immunoreactivity in human retina. Ophthalmic Research 18, 209214.CrossRefGoogle ScholarPubMed
Wässle, H. & Boycott, B.B. (1991). Functional architecture of the mammalian retina. Physiology Review 71, 447480.CrossRefGoogle ScholarPubMed
Wässle, H. & Chun, M.H. (1989). GABA-like immunoreactivity in the cat retina: Light microscopy. Journal of Comparative Neurology 279, 4354.CrossRefGoogle ScholarPubMed
Wässle, H., Grünert, U., Cook, N.J. & Molday, R.S. (1992). The cGMP-gated channel of rod outer segments is not localized in bipolar cells of the mammalian retina. Neuroscience Letters 134, 199202.CrossRefGoogle Scholar
Wässle, H. & Riemann, H.J. (1978). The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society B (London) 200, 441461.Google ScholarPubMed
Wässle, H., Schäfer-Trenkler, I. & Voigt, T. (1986). Analysis of a glycinergic inhibitory pathway in the cat retina. Journal of Neuroscience 6, 594604.CrossRefGoogle ScholarPubMed
Wässle, H., Yamashita, M., Greferath, U., Grünert, U. & Müller, F. (1991). The rod bipolar cell of the mammalian retina. Visual Neuroscience 7, 99112.CrossRefGoogle ScholarPubMed
Wiechmann, A.F. & Hollyfield, J.G. (1987). Localization of hydroxy-indole-O-methyltransferase-like immunoreactivity in photoreceptors and cone bipolar cells in the human retina: A light and electron microscope study. Journal of Comparative Neurology 258, 253266.CrossRefGoogle ScholarPubMed
Wiechmann, A.F. & Hollyfield, J.G. (1989). HIOMT-like immunoreactivity in the vertebrate retina: A species comparison. Experimental Eye Research 49, 10791095.CrossRefGoogle ScholarPubMed
Wiechmann, A.F. & O’Steen, W.K. (1990). Hydroxyindole-O-meth-yltransferase in rat retinal bipolar cells: Persistence following photoreceptor destruction. Brain Research 506, 1418.CrossRefGoogle ScholarPubMed
Wood, J.G., Hart, C.E., Mazzei, G.J., Girard, P.R. & Kuo, J.F. (1988). Distribution of protein kinase C immunoreactivity in rat retina. Histochemistry Journal 20, 6368.CrossRefGoogle ScholarPubMed
Yamagata, K., Goto, K., Kuo, C.H., Kondo, H. & Miki, N. (1990). Visinin: a novel calcium binding protein expressed in retinal cone cells. Neuron 2, 469476.CrossRefGoogle Scholar
Yamashita, M. & Wässle, H. (1991). Responses of rod bipolar cells isolated from the rat retina to the glutamate agonist 2-amino-4-phos-phonobutyric acid (APB). Journal of Neuroscience 11, 23722382.CrossRefGoogle Scholar
Young, H.M. & Vaney, D.I. (1991). Rod-signal interneurons in the rabbit retina: I. Rod bipolar cells. Journal of Comparative Neurology 310, 139153.CrossRefGoogle ScholarPubMed
Zhang, D. & Yeh, H.H. (1991). Protein kinase C-like immunoreactivity in rod bipolar cells of the rat retina: A developmental study. Visual Neuroscience 6, 429437.CrossRefGoogle ScholarPubMed