Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T11:30:51.487Z Has data issue: false hasContentIssue false

Quantitative stimulus-response studies on sustained ganglion cells in the frog retina

Published online by Cambridge University Press:  02 June 2009

Rene Garcia
Affiliation:
Laboratoire de Neurophysiologie, URA CNRS 290, Faculté des Sciences, Poitiers, France
Frederic Gaillard
Affiliation:
Laboratoire de Neurophysiologie, URA CNRS 290, Faculté des Sciences, Poitiers, France

Abstract

“Sustained” visual units, i.e. nonerasable (R1) and erasable (R2) units as commonly described, were recorded in the superficial layers of the rostral optic tectum of Rana esculenta and their neuronal activity (expressed as the mean firing frequency ) was quantitatively analyzed The mean value of the exponent α of the velocity function of the erasable R1 units was found to be 0.46 and the constant k to be about 24.7. The optimal stimulus diameter was equal to 2.6 deg. For the whole population of the erasable units, the exponent α was found to be between 0.36–0.75 (mean value ≈ 0.56, i.e. largely different from the values currently reported for such units) and was independent of the stimulus diameter (D = 0.6–6 deg). However, the constant k of the velocity function (range: 8.2–37.7) varied with D. Most of the erasable units (called “mixed R1-R2” units) therefore showed an R1-type velocity function with an exponent α ≈ 0.5 and a constant k ≈ 25 but reacted to other parameters as did “typical” R2 units: (i) their neuronal response was related to the stimulus diameter by a logarithmic function with a maximum obtained for D = 2.4 deg; and (ii) a variation of about 4–17% on either side of the average value of was observed, independent either of the stimulus velocity or of the diameter of the stimulus. Results are compared to known quantitative data, and the use of stimulus-response relationships as a tool for classification is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Butenandt, E. & Grüsser, O.-J. (1968). The effect of stimulus area on the response of movement detecting neurons in the frog's retina. Pflügers Archiv 298, 283293.CrossRefGoogle ScholarPubMed
Ewert, J.-P., Burghagen, H. & Schürg-Pfeiffer, E. (1983). Neuroethological analysis of the innate releasing mechanism for preycatching behavior in toads. In Advances in Vertebrate Neuroethology, ed. Ewert, J-P., Capranica, R. R. & Ingle, D. J., pp. 413475. New York, London: Plenum Press.CrossRefGoogle Scholar
Ewert, J.-P. & Gebauer, L. (1973). Großenkonstanz phänomene im Beutefangverhalten der Erdkröte (Bufo bufo L.). Journal of Comparative Physiology 85, 303315.CrossRefGoogle Scholar
Ewert, J.-P. & Hock, F. J. (1972). Movement-sensitive neurons in the toad's retina. Experimental Brain Research 16, 4159.CrossRefGoogle ScholarPubMed
Ewert, J.-P., Krug, H. & Schönitz, G. (1979). Activity of retinal class R3 ganglion cells in the toad Bufo bufo (L) in response to moving configurational stimuli: influence of the movement direction. Journal of Comparative Physiology 129, 211215.CrossRefGoogle Scholar
Fite, K.V. & Scalia, F. (1976). Central visual pathways in the frog. In The Amphibian Visual System, ed. Fite, K. V., pp. 87118. New York, San Francisco, London: Academic Press.CrossRefGoogle Scholar
Gaillard, F. (1984a). Vision binoculaire chez la grenouille. Propriétés fonctionnelles, caractéristiques anatomiques, et intégration neuronale des divers systèmes rétino-tectaux. Doctoral Dissertation, University of Poitiers.Google Scholar
Gaillard, F. (1984b). Neurones monoculaires à petit champ récepteur dans le tectum optique de la grenouille: propriétés analytiques et problèmes de classification. Journal de Physiologie (Paris) 79, 139144.Google Scholar
Gaillard, F. & Garcia, R. (1986). The velocity function of ipsilateral visual units in the frog optic tectum: comparison with retinal ganglion cells. Neuroscience Letters 65, 99103.CrossRefGoogle ScholarPubMed
Gaillard, F. & Roussel, H. (1986). The visual field of the North-African toad (Bufo mauritanicus). Naturwissenschaften 73, 158.CrossRefGoogle Scholar
Gaillard, F., Garcia, R. & Roussel, H. (1988). First neurophysiological approach to the retino-tectal projections in Discoglossus pictus (Anura). Journal of Comparative Physiology 162, 435441.CrossRefGoogle Scholar
Garcia, R. (1988). Etude quantitative du codage de l'information visuelle dans le système retino-tecto-tectal ipsilatéral de Rana esculenta (Amphibien anoure): comparaison avec la projection contralatérale directe. Doctoral Dissertation, University of Poitiers.Google Scholar
Garcia, R. & Gaillard, F. (1989). Quantitative studies on ipsilateral type 2 retino-tecto-tectal units in the frog. Homologies with R3 ganglion cells. Journal of Comparative Physiology 164, 377389.CrossRefGoogle ScholarPubMed
Garcia, R., Gaillard, F. & Jacquenod, J.-C. (1988). A quantitative analysis of the ipsilateral tectal unit responses to moving stimuli in frogs. Journal of Comparative Physiology 162, 443451.CrossRefGoogle Scholar
Grüsser, O.-J. & Grüsser-Cornehls, U. (1970). Die neurophysiologie visuell gesteurerter Verhaltensweisen bei Anuren. Deutschen Zoologischen Gesellschaft 64, 201218.Google Scholar
Grüsser, O.-J. & Grüsser-Cornehls, U. (1972). Comparative physiology of movement-detecting neuronal systems in lower vertebrates (Anura and Urodela). Bibliotheca Ophthalmologica 82, 260273.Google ScholarPubMed
Grüsser, O.-J. & Grüsser-Cornehls, U. (1973). Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlations. In Handbook of Sensory Physiology, Vol. VII/3A, ed. Jung, R., pp. 333429. Berlin, Heidelberg, New York: Springer Verlag.Google Scholar
Grüsser, O.-J. & Grüsser-Cornehls, U. (1976). Neurophysiology of the anuran visual system. In Frog Neurobiology, ed Llinas, R. & Precht, W., pp. 297385. Berlin, Heidelberg, New York: Springer Verlag.CrossRefGoogle Scholar
Grüsser, O.-J., Grüsser-Cornehls, U., Finkelstein, D., Henn, V., Patutschnik, M. & Butenandt, E. (1967). A quantitative analysis of movement-detecting neurons in the frog's retina. Pflügers Archiv 293, 100106.CrossRefGoogle Scholar
Grüsser, O.-J., Finkelstein, D. & Grüsser-Cornehls, U. (1968a). The effect of the stimulus velocity on the response of movementsensitive neurons of the frog's retina. Pflügers Archiv 300, 4966.CrossRefGoogle Scholar
Grüsser, O.-J., Grüsser-Cornehls, U. & Licker, M. D. (1968b). Further studies on the velocity function of movement-detecting class-2 neurons in the frog retina. Vision Research 8, 11731185.CrossRefGoogle ScholarPubMed
Grüsser-Cornehls, U. & Himstedt, W. (1973). Responses of retinal and tectal neurons of the salamander (Salamandra salamandra L.) to moving visual stimuli. Brain, Behavior, and Evolution 7, 145168.CrossRefGoogle Scholar
Grüsser-Cornehls, U. & Saunders, R. McD. (1981). Chromatic subclasses of frog retinal ganglion cells: studies using black stimuli moving on a monochromatic background. Vision Research 21, 469478.CrossRefGoogle ScholarPubMed
Hodos, W., Dawes, E. A. & Keating, M. J. (1982). Properties of the receptive fields of the frog retinal ganglion cells as revealed by their response to moving stimuli. Neuroscience 7, 15331544.CrossRefGoogle ScholarPubMed
Keating, M. J. & Gaze, R. M. (1970). Observations on the “surround” properties of the receptive fields of frog retinal ganglion cells. Quarterly Journal of Experimental Physiology 55, 129142.CrossRefGoogle ScholarPubMed
Lázàr, G. (1979). Organization of the frog visual system. In Recent Developments of Neurobiology in Hungary, ed. Lissak, K., pp. 950. Budapest: Akademiai Kaido.Google Scholar
Lázàr, G. & Székely, G. (1969). Distribution of optic terminals in the the different optic centers of the frog. Brain Research 16, 114.CrossRefGoogle ScholarPubMed
Maturana, H. R., Lettvin, J. Y., McCulloch, W. S. & Pitts, W. H. (1960). Anatomy and physiology of vision in the frog (Rana pipiens). Journal of General Physiology 43, 129175.CrossRefGoogle Scholar
Pomeranz, B. (1972). Metamorphosis of frog vision: changes in ganglion cell physiology and anatomy. Experimental Neurology 34, 187199.CrossRefGoogle ScholarPubMed
Potter, H. D. (1972). Terminal arborizations of retinotectal axons in the bullfrog. Journal of Comparative Neurology 144, 269284.CrossRefGoogle ScholarPubMed
Reuter, T. & Virtanen, K. (1972). Border and color coding in the retina of frog. Nature 239, 260263.CrossRefGoogle Scholar
Scalia, F. & Gregory, K. (1970). Retinofugal projections in the frog, location of the postsynaptic neurons. Brain, Behavior, and Evolution 3, 1629.CrossRefGoogle ScholarPubMed
Schürg-Pfeiffer, E. & Ewert, J.-P. (1981). Investigation of neurons involved in the analysis of gestalt prey-features in the frog (Rana temporaria) Journal of Comparative Physiology 141, 139152.CrossRefGoogle Scholar
Witpaard, J. (1976). Frog's vision: electophysiological and developmental aspects. Doctoral Dissertation, Rijksuniversiteit, Leiden.Google Scholar
Witpaard, J. & Ter Keurs, H. E. D. J. (1975). A reclassification of retinal ganglion cells in the frog, based upon tectal endings and response properties. Vision Research 15, 13331338.CrossRefGoogle ScholarPubMed