Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:18:51.143Z Has data issue: false hasContentIssue false

Processing of form and motion in area 21a of cat visual cortex

Published online by Cambridge University Press:  02 June 2009

B. Dreher
Affiliation:
Department of Anatomy, The University Of Sydney, N.S.W. 2006, Australia
A. Michalski
Affiliation:
Department of Anatomy, The University Of Sydney, N.S.W. 2006, Australia
R. H. T. Ho
Affiliation:
Department of Anatomy, The University Of Sydney, N.S.W. 2006, Australia
C. W. F. Lee
Affiliation:
Department of Anatomy, The University Of Sydney, N.S.W. 2006, Australia
W. Burke
Affiliation:
Department of Anatomy, The University Of Sydney, N.S.W. 2006, Australia Department of Physiology, The University Of Sydney, N.S.W. 2006, Australia

Abstract

Extracellular recordings from single neurons have been made from presumed area 21a of the cerebral cortex of the cat, anesthetized with N2O/O2/sodium pentobarbitone mixture. Area 21a contains mainly a representation of a central horizontal strip of contralateral visual field about 5 deg above and below the horizontal meridian.

Excitatory discharge fields of area 21a neurons were substantially (or slightly but significantly) larger than those of neurons at corresponding eccentricities in areas 17, 19, or 18, respectively. About 95% of area 21a neurons could be activated through either eye and the input from the ipsilateral eye was commonly dominant. Over 90% and less than 10% of neurons had, respectively, C-type and S-type receptive-field organization. Virtually all neurons were orientation-selective and the mean width at half-height of the orientation tuning curves at 52.9 deg was not significantly different from that of neurons in areas 17 and 18. About 30% of area 21a neurons had preferred orientations within 15 deg of the vertical.

The mean direction-selectivity index (32.8%) of area 21a neurons was substantially lower than the indices for neurons in areas 17 or 18. Only a few neurons exhibited moderately strong end-zone inhibition. Area 21a neurons responded poorly to fast-moving stimuli and the mean preferred velocity at about 12.5 deg/s was not significantly different from that for area 17 neurons.

Selective pressure block of Y fibers in contralateral optic nerve resulted in a small but significant reduction in the preferred velocities of neurons activated via the Y-blocked eye. By contrast, removal of the Y input did not produce significant changes in the spatial organization of receptive fields (S or C type), the size of the discharge fields, the width of orientation tuning curves, or direction-selectivity indices.

Our results are consistent with the idea that area 21a receives its principal excitatory input from area 17 and is involved mainly in form rather than motion analysis.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albus, K. (1975 a). A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. II. The spatial organization of the orientation domain. Experimental Brain Research 24, 181202.CrossRefGoogle ScholarPubMed
Albus, K. (1975 b). Predominance of monocularly driven cells in the projection area of the central visual field in cat’s striate cortex. Brain Research 89, 341347.CrossRefGoogle ScholarPubMed
Baker, J.F., Petersen, S.E., Newsome, W.T. & Allman, J.M. (1981). Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): A quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas. Journal of Neurophysiology 45, 397416.CrossRefGoogle ScholarPubMed
Barlow, H., Blakemore, C. & Pettigrew, J.D. (1967). The neural mechanism of binocular depth discrimination. Journal of Physiology (London) 193, 327342.CrossRefGoogle ScholarPubMed
Berson, D.M. (1985). Cat lateral suprasylvian cortex: Y-cell inputs and corticotectal projection. Journal of Neurophysiology 53, 544556.CrossRefGoogle ScholarPubMed
Berson, D.M. & Graybiel, A.M. (1978). Parallel thalamic zones in the LP-pulvinar complex of the cat identified by their afferent and efferent connections. Brain Research 147, 139148.CrossRefGoogle ScholarPubMed
Berson, D.M. & Graybiel, A.M. (1980). Some cortical and subcortical fiber projections to the accessory optic nuclei in the cat. Neuroscience 5, 22032217.CrossRefGoogle Scholar
Berson, D.M. & Graybiel, A.M. (1983). Organization of the striaterecipient zone of the cat’s lateralis posterior-pulvinar complex and its relations with the geniculostriate system. Neuroscience 9, 337372.CrossRefGoogle Scholar
Bullier, J., Kennedy, H. & Salinger, W. (1984 a). Bifurcation of subcortical afferents to visual areas 17,18 and 19 in the cat cortex. Journal of Comparative Neurology 228, 309328.CrossRefGoogle Scholar
Bullier, J., Kennedy, H. & Salinger, W. (1984 b). Branching and laminar origin of projections between visual cortical areas in the cat. Journal of Comparative Neurology 228, 329341.CrossRefGoogle ScholarPubMed
Burke, W., Burne, J.A. & Martin, P.R. (1985). Selective block of Y optic nerve fibres in the cat and the occurrence of inhibition in the lateral geniculate nucleus. Journal of Physiology (London) 364, 8192.CrossRefGoogle Scholar
Burke, W., Cottee, L.J., Garvey, J., Kumarasinghe, R. & Kyriacou, C. (1986). Selective degeneration of optic nerve fibres in the cat produced by a pressure block. Journal of Physiology (London) 376, 461476.CrossRefGoogle ScholarPubMed
Burke, W., Dreher, B., Michalski, A., Cleland, B.G. & Rowe, M.H. (1992). The effects of selective pressure block of Y-type optic nerve fibers on the receptive-field properties of cells in the striate cortex of the cat. Visual Neuroscience 9, 4764.CrossRefGoogle ScholarPubMed
Burkhalter, A., Felleman, D.J., Newsome, W.T. & Van Essen, D.C. (1986). Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex. Vision Research 26, 6380.CrossRefGoogle ScholarPubMed
Burkhalter, A. & Van Essen, D.C. (1986). Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey. Journal of Neuroscience 6, 23272351.CrossRefGoogle ScholarPubMed
Camarda, R.M. (1979). Hypercomplex cell types in area 18 of the cat. Experimental Brain Research 36, 191194.CrossRefGoogle ScholarPubMed
Camarda, R.M. & Rizzolatti, G. (1976). Receptive fields of cells in the superficial layers of the cat’s area 17. Experimental Brain Research 24, 423427.CrossRefGoogle ScholarPubMed
Chalupa, L.M. & Abramson, B.P. (1989). Visual receptive fields in the striate-recipient zone of the lateral posterior-pulvinar complex. Journal of Neuroscience 9, 347357.CrossRefGoogle ScholarPubMed
Clare, M.H. & Bishop, G.H. (1954). Responses from an association area secondarily activated from optic cortex. Journal of Neurophysiology 17, 271277.CrossRefGoogle ScholarPubMed
Distler, C. & Hoffmann, K.-P. (1991). Depth perception and cortical physiology in normal and innate microstrabismic cats. Visual Neuroscience 6, 2541.CrossRefGoogle ScholarPubMed
Dreher, B. (1972). Hypercomplex cells in the cat’s striate cortex. Investigative Ophthalmology 11, 355356.Google ScholarPubMed
Dreher, B. (1986). Thalamocortical and corticocortical interconnections in the cat visual system: relation to the mechanisms of information processing. In Visual Neuroscience, ed. Pettigrew, J.D., Sanderson, K.J. & Levick, W.R., pp. 290314. Cambridge, England: Cambridge University Press.Google Scholar
Dreher, B. & Cottee, L.J. (1975). Visual receptive-field properties of cells in area 18 of cat’s cerebral cortex before and after acute lesions in area 17. Journal of Neurophysiology 38, 735750.CrossRefGoogle ScholarPubMed
Dreher, B., Leventhal, A.G. & Hale, P.T. (1980). Geniculate input to cat visual cortex: A comparison of area 19 with areas 17 and 18. Journal of Neurophysiology 44, 804826.CrossRefGoogle Scholar
Dreher, B., Michalski, A., Cleland, B.G. & Burke, W. (1992). Effects of selective pressure block of Y-type optic nerve fibers on the receptive-field properties of neurons in area 18 of the visual cortex of the cat. Visual Neuroscience 9, 6578.CrossRefGoogle ScholarPubMed
Duysens, J., Orban, G.A., Van Der Glas, H.W. & De Zaegher, F.E. (1982 a). Functional properties of area 19 as compared to area 17 of the cat. Brain Research 231, 279291.CrossRefGoogle Scholar
Duysens, J., Orban, G.A., Van Der Glas, H.W. & Maes, H. (1982 b). Receptive field structure of area 19 as compared to area 17 of the cat. Brain Research 231, 293308.CrossRefGoogle Scholar
Einstein, G. & Fitzpatrick, D. (1991). Distribution and morphology of area 17 neurons that project to the cat’s extrastriate cortex. Journal of Comparative Neurology 303, 132149.CrossRefGoogle Scholar
Farmer, S.G. & Rodieck, R.W. (1982). Ganglion cells of the cat accessory optic system: Morphology and retinal topography. Journal of Comparative Neurology 205, 190198.CrossRefGoogle ScholarPubMed
Ferster, D. (1981). A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex. Journal of Physiology (London) 311, 623655.CrossRefGoogle ScholarPubMed
Gabibov, I.M. (1987). Relationship between size and eccentricity of receptive fields in the cat cerebral cortex area 21. Neurophysiology 19, 183185.CrossRefGoogle Scholar
Gattass, R., Sousa, A.P.B. & Gross, C.G. (1988). Visuotopic organization and extent of V3 and V4 of the macaque. Journal of Neuroscience 8, 18311845.CrossRefGoogle ScholarPubMed
Gilbert, CD. (1977). Laminar differences in receptive field properties of cells in cat primary visual cortex. Journal of Physiology (London) 268, 391421.CrossRefGoogle ScholarPubMed
Gilbert, C.D. & Kelly, J.P. (1975). The projection of cells in different layers of the cat’s visual cortex. Journal of Comparative Neurology 163, 81106.CrossRefGoogle ScholarPubMed
Grant, S. & Shipp, S. (1991). Visuotopic organization of the lateral suprasylvian area of an adjacent area of the ectosylvian gyrus of cat cortex: A physiological and connectional study. Visual Neuroscience 6, 315338.CrossRefGoogle ScholarPubMed
Grasse, K.L., Cynader, M.S. & Douglas, R.M. (1984). Alterations in response properties in the lateral and dorsal terminal nuclei of the cat accessory optic system following visual cortex lesions. Experimental Brain Research 55, 6980.CrossRefGoogle ScholarPubMed
Graybiel, A.M. & Berson, D.M. (1980). Histochemical identification and afferent connections of subdivisions in the lateralis posterior-pulvinar complex and related thalamic nuclei in the cat. Neuroscience 5, 11751238.CrossRefGoogle ScholarPubMed
Graybiel, A.M. & Berson, D.M. (1981 a). Families of related cortical areas in the extrastriate visual system. Summary of an hypothesis. In Cortical Sensory Organization Vol. 2. Multiple Visual Areas, ed. Woolsey, C.N., pp. 103120. Clifton, New Jersey: Humana Press.Google Scholar
Graybiel, A.M. & Berson, D.M. (1981 b). On the relation between transthalamic and transcortical pathways in the visual system. In The Organization of the Cerebral Cortex, ed. Schmitt, F.O., Worden, F.G., Adelman, G. & Dennis, S.G., pp. 285319. Cambridge, Massachusetts: MIT Press.Google Scholar
Guillery, R.W., Geisert, E.E. Jr, Polley, E.H. & Mason, C.A. (1980). An analysis of the retinal afferents to the cat’s medial interlaminar nucleus and to its rostral thalamic extension, the ’geniculate wing. Journal of Comparative Neurology 194, 117142.CrossRefGoogle Scholar
Hammond, P. (1978). Inadequacy of nitrous oxide/oxygen mixtures for maintaining anaesthesia in cats: Satisfactory alternatives. Pain 5, 143151.CrossRefGoogle ScholarPubMed
Hammond, P. & Andrews, D.P. (1978). Orientation tuning of cells in areas 17 and 18 of the cat’s visual cortex. Experimental Brain Research 31, 341351.CrossRefGoogle ScholarPubMed
Hanker, J.S., Yates, P.E., Metz, C.B. & Rustioni, A. (1977). A new specific sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase. Histochemical Journal 9, 789792.CrossRefGoogle ScholarPubMed
Harvey, A.R. (1980). The afferent connections and laminar distribution of cells in area 18 of the cat. Journal of Physiology (London) 302, 483505.CrossRefGoogle ScholarPubMed
Heath, C.J. & Jones, E.G. (1971). The anatomical organization of the suprasylvian gyrus of the cat. Ergebnisse der Anatomie 45, 161.Google ScholarPubMed
Heggelund, P. & Albus, R. (1978). Response variability and orientation discrimination of single cells in striate cortex of cat. Experimental Brain Research 32, 197211.CrossRefGoogle ScholarPubMed
Henry, G.H. (1977). Receptive field classes of cells in the striate cortex of the cat. Brain Research 133, 128.CrossRefGoogle ScholarPubMed
Henry, G.H., Bishop, P.O. & Dreher, B. (1974 a). Orientation, axis and direction as stimulus parameters for striate cells. Vision Research 14, 767777.CrossRefGoogle ScholarPubMed
Henry, G.H., Dreher, B. & Bishop, P.O. (1974 b). Orientation specificity of cells in cat striate cortex. Journal of Neurophysiology 37, 13941409.CrossRefGoogle ScholarPubMed
Herdman, S.J., Tusa, R.J. & Smith, C.B. (1989). Cortical areas involved in horizontal OKN in cats: metabolic activity. Journal of Neuroscience 9, 11501162.CrossRefGoogle ScholarPubMed
Ho, H.T., Lee, C.W.F. & Dreher, B. (1982). Receptive field properties of neurons in area 21a of cat visual cortex. Proceedings of Australian Physiological and Pharmacological Society 13, 196P.Google Scholar
Hoffmann, K.-P. (1983). Control of the optokinetic reflex by the nucleus of the optic tract in the cat. In Spatially Oriented Behavior, ed. Hein, A. & Jeannerod, M., pp. 135153. New York: Springer Verlag.CrossRefGoogle Scholar
Hoffmann, K.-P. (1986). Visual inputs relevant for the optokinetic nystagmus in mammals. In Progress in Brain Research, Vol. 64, ed. Freund, H.J., Buttner, U., Cohen, B. & Noth, J., pp. 7583. Amsterdam: Elsevier Science Publishers.Google Scholar
Hoffmann, K.-P., Bauer, R., Huber, H.P. & Mayr, M. (1984). Single cell activity in area 18 of the cat’s visual cortex during optokinetic nystagmus. Experimental Brain Research 57, 118127.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology (London) 160, 106154.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology 28, 229289.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1969). Visual area of the lateral suprasylvian gyrus (Clare-Bishop area) of the cat. Journal of Physiology (London) 202, 251260.CrossRefGoogle ScholarPubMed
Joshua, D.E. & Bishop, P.O. (1970). Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral single units in cat striate cortex. Experimental Brain Research 10, 389416.CrossRefGoogle ScholarPubMed
Kaas, J.H. (1980). A comparative survey of visual cortex organization in mammals. In Comparative Neurology of Telencephalon, ed. Ebbeson, S.O.E., pp. 483502. New York: Plenum Press.CrossRefGoogle Scholar
Kaas, J.H. (1989). Why does the brain have so many visual areas? Journal of Cognitive Neuroscience 1, 121135.CrossRefGoogle ScholarPubMed
Kaas, J.H. & Krubitzer, L.A. (1991). The organization of extrastriate visual cortex. In Neuroanatomy of the Visual Pathways and Their Development, ed. Dreher, B. & Robinson, S.R., pp. 302323. In Vision and Visual Dysfunction, Vol. 3, ed. Cronly-Dillon, J., Houndmills, Basingstoke, Hampshire, United Kingdom: Macmillan Press.Google Scholar
Kato, H., Bishop, P.O. & Orban, G.A. (1978). Hypercomplex and simple/complex cell classifications in cat striate cortex. Journal of Neurophysiology 41, 10711095.CrossRefGoogle ScholarPubMed
Kennedy, H. & Magnin, M. (1977). Saccadic influences on single neuron activity in the medial bank of the cat’s suprasylvian sulcus (Clare Bishop Area). Experimental Brain Research 27, 315317.Google ScholarPubMed
Kimura, M., Shiida, T., Tanaka, K. & Toyama, K. (1980). Three classes of area 19 cortical cells of the cat classified by their neuronal connectivity and photic responsiveness. Vision Research 20, 6977.CrossRefGoogle Scholar
Lee, C.W.F., Ho, H.T. & Dreher, B. (1982). Area 21a and posteromedial lateral suprasylvian area (PMLS) of the cat visual cortex: one or two areas? A horseradish peroxidase study. Proceedings of Australian Physiological and Pharmacological Society 13, 195P.Google Scholar
LeVay, S. & Voigt, T. (1988). Ocular-dominance and disparity coding in cat visual cortex. Visual Neuroscience 1, 395414.CrossRefGoogle ScholarPubMed
Leventhal, A.G. (1983). Systematic relationship between preferred orientation and receptive field position of neurons in cat striate cortex. Journal of Comparative Neurology 220, 476483.CrossRefGoogle ScholarPubMed
Leventhal, A.G. & Hirsch, H.V.B. (1980). Receptive-field properties of different classes of neurons in visual cortex of normal and dark-reared cats. Journal of Neurophysiology 43, 11111132.CrossRefGoogle ScholarPubMed
Leventhal, A.G. & Hirsch, H.V.B. (1983). Effects of visual deprivation upon the geniculocortical W-cell pathway in the cat: Area 19 and its afferent input. Journal of Comparative Neurology 214, 5971.CrossRefGoogle Scholar
Leventhal, A.G., Keens, J. & Toörk, I. (1980). The afferent ganglion cells and cortical projections of the retinal recipient zone (RRZ) of the cat’s ’pulvinar complex’. Journal of Comparative Neurology 194, 535554.CrossRefGoogle ScholarPubMed
Leventhal, A.G., ScHall, J.D. & Wallace, W. (1984). Relationship between preferred orientation and receptive field position of neurons in extrastriate cortex (area 19) in the cat. Journal of Comparative Neurology 222, 445451.CrossRefGoogle Scholar
Maciewicz, R.J. (1974). Afferents to the lateral suprasylvian gyrus of the cat traced with horseradish peroxidase. Brain Research 78, 139143.CrossRefGoogle Scholar
Marcotte, R.R. & Updyke, B.V. (1982). Cortical visual areas of the cat project differentially onto the nuclei of the accessory optic system. Brain Research 242, 205217.CrossRefGoogle ScholarPubMed
Mesulam, M.-M. (1978). Tetramethyl benzidine for horseradish peroxidase neurochemistry: A non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. Journal of Histochemistry and Cytochemistry 26, 106117.CrossRefGoogle Scholar
Michalski, A., Wimborne, B.M. & Henry, G.H. (1992). Neuronal activity in cat cortical area 21a can be reduced by cooling areas 17 and 18. Proceedings of Australian Neuroscience Society 3, 165.Google Scholar
Mizobe, K., Itoi, M., Kaihara, T. & Toyama., K. (1988). Neuronal responsiveness in area 21a of the cat. Brain Research 438, 307310.CrossRefGoogle ScholarPubMed
Montero, V.M. (1981). Topography of the cortico-cortical connections from the striate cortex of the cat. Brain, Behavior, and Evolution 18, 194218.CrossRefGoogle ScholarPubMed
Newsome, W.T. & Allman, J.M. (1980). Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus and the Bushbaby, Galago senegalensis. Journal of Comparative Neurology 194, 209233.CrossRefGoogle ScholarPubMed
Newsome, W.T., Maunsell, J.H.R. & Van Essen, D.C. (1986). Ventral posterior visual area of the macaque: Visual topography and areal boundaries. Journal of Comparative Neurology 252, 139153.CrossRefGoogle ScholarPubMed
Noda, H., Freeman, R.B. & Creutzfeldt, O.D. (1972). Neuronal correlates of eye movement in the visual cortex of the cat. Science 175, 661664.CrossRefGoogle ScholarPubMed
Orban, G.A. (1984). Neuronal Operations in the Visual Cortex. Berlin: Springer Verlag.CrossRefGoogle Scholar
Orban, G.A. (1986). Processing of moving images in the geniculocortical pathway. In Visual Neuroscience, ed. Pettigrew, J.D., Sanderson, K.J. & Levick, W.R., pp. 121141. Cambridge, England: Cambridge University Press.Google Scholar
Orban, G.A., Kennedy, H. & Maes, H. (1981 a). Response to movement of neurons in areas 17 and 18 of the cat: Velocity sensitivity. Journal of Neurophysiology 45, 10431058.CrossRefGoogle ScholarPubMed
Orban, G.A., Kennedy, H. & Maes, H. (1981 b). Response to movement of neurons in areas 17 and 18 of the cat: Direction selectivity. Journal of Neurophysiology 45, 10591073.CrossRefGoogle ScholarPubMed
Palmer, L.A., Rosenquist, A.C. & Tusa, R.J. (1978). The retinotopic organization of lateral suprasylvian visual areas in the cat. Journal of Comparative Neurology 177, 237256.CrossRefGoogle ScholarPubMed
Payne, B.R. & Berman, N. (1983). Functional organization of neurons in cat striate cortex: Variations in preferred orientation and orientation selectivity with receptive-field type, ocular dominance and location in visual-field map. Journal of Neurophysiology 49, 10511072.CrossRefGoogle ScholarPubMed
Pettigrew, J.D. & Dreher, B. (1987). Parallel processing of binocular disparity in the cat’s retinogeniculocortical pathways. Proceedings of Royal Society (London) 232, 297321.Google ScholarPubMed
Raczkowski, D. & Rosenquist, A.C. (1983). Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat. Journal of Neuroscience 3, 19121942.CrossRefGoogle ScholarPubMed
Rapaport, D.H., Dreher, B. & Rowe, M.H. (1982). Lack of binocularity in cells of area 19 of cat visual cortex following monocular deprivation. Brain Research 246, 319324.CrossRefGoogle Scholar
Rauschecker, J.P. (1988). Visual function of the cat’s LP/LS subsystem in global motion processing. In Progress in Brain Research, Vol. 75, ed. Hicks, T.P. & Benedek, G., pp. 95108. Amsterdam: Elsevier Science Publishers.Google Scholar
Rauschecker, J.P., von Gruünau, M.W. & Poulin, C. (1987 a). Centrifugal organization of direction preferences in the cat’s lateral suprasylvian visual cortex and its relation to flow field processing. Journal of Neuroscience 7, 943958.CrossRefGoogle ScholarPubMed
Rauschecker, J.P., von Gruünau, M.W. & Poulin, C. (1987 b). Thal-amo-cortical connections and their correlation with receptive field properties in the cat’s lateral suprasylvian visual cortex. Experimental Brain Research 67, 100112.CrossRefGoogle ScholarPubMed
Rose, D. (1977). Responses of single units in cat visual cortex to moving bars of light as a function of bar length. Journal of Physiology (London) 271, 123.CrossRefGoogle ScholarPubMed
Rose, D. & Blakemore, C. (1974). An analysis of orientation selectivity in the cat’s visual cortex. Experimental Brain Research 20, 117.CrossRefGoogle ScholarPubMed
Rosenquist, A.C. (1985). Connections of visual cortical areas in the cat. In Cerebral Cortex, Vol. 3, ed. Peters, A. & Jones, E.G., pp. 81117. New York: Plenum Publishing Corporation.Google Scholar
Saito, H.A., Tanaka, K., Fukada, Y. & Oyamada, H. (1988). Analysis of discontinuity in visual contours in area 19 of the cat. Journal of Neuroscience 8, 11311143.CrossRefGoogle Scholar
Schall, J.D., Vitek, J.D. & Leventhal, A.G. (1986). Retinal constraints on orientation specificity in cat visual cortex. Journal of Neuroscience 6, 823836.CrossRefGoogle ScholarPubMed
Sherk, H. (1986). Location and connections of visual cortical areas in the cat’s suprasylvian sulcus. Journal of Comparative Neurology 247, 131.CrossRefGoogle ScholarPubMed
Sherk, H. (1988). Retinotopic order and functional organization in a region of suprasylvian visual cortex, the Clare-Bishop area. In Progress in Brain Research, Vol. 75, ed. Hicks, T.P. & Benedek, G., pp. 237244. Amsterdam: Elsevier Science Publishers.Google Scholar
Sherk, H. (1989). Visual response properties of cortical inputs to an extrastriate cortical area in the cat. Visual Neuroscience 3, 249265.CrossRefGoogle Scholar
Sherk, H. (1990). Functional organization of input from areas 17 and 18 to an extrastriate area in the cat. Journal of Neuroscience 10, 27802790.CrossRefGoogle Scholar
Shevelev, I.A. & Manasyan, K.A. (1984). Some unusual properties of neurones in the cat posterotemporal cortex. Vision Research 24, 19511958.CrossRefGoogle ScholarPubMed
Shipp, S. & Grant, S. (1991). Organization of reciprocal connections between area 17 and the lateral suprasylvian area of cat visual cortex. Visual Neuroscience 6, 339355.CrossRefGoogle ScholarPubMed
Siegel, S. (1956). Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill Company.Google Scholar
Skottun, B.C. & Freeman, R.D. (1984). Stimulus specificity of binocular cells in the cat’s visual cortex: ocular dominance and the matching of left and right eyes. Experimental Brain Research 56, 206216.CrossRefGoogle ScholarPubMed
Spear, P.D. (1991). Functions of extrastriate visual cortex in non-primate species. In The Neural Basis of Visual Function, ed. Leventhal, A.G., pp. 339370. In Vision and Visual Dysfunction, Vol. 4, ed. Cronly-Dillon, J.Houndmills, Basingstoke, Hampshire, United Kingdom: Macmillan Press.Google Scholar
Sprague, J.M., Levy, J., Diberardino, A. & Berlucchi, G. (1977). Visual cortical areas mediating form discrimination in the cat. Journal of Comparative Neurology 172, 441488.CrossRefGoogle ScholarPubMed
Stone, J., Dreher, B. & Leventhal, A.G. (1979). Hierarchical and parallel mechanisms in the organisation of visual cortex. Brain Research Reviews 1, 345394.CrossRefGoogle Scholar
Symonds, L.L. & Rosenquist, A.C. (1984 a). Corticocortical connections among visual areas in the cat. Journal of Comparative Neurology 229, 138.CrossRefGoogle ScholarPubMed
Symonds, L.L. & Rosenquist, A.C. (1984 b). Laminar origins of visual corticocortical connections in the cat. Journal of Comparative Neurology 229, 3947.CrossRefGoogle ScholarPubMed
Symonds, L.L., Rosenquist, A.C., Edwards, S.B. & Palmer, L.A. (1981). Projections of the pulvinar-lateral posterior complex to visual cortical areas in the cat. Neuroscience 6, 19952020.CrossRefGoogle ScholarPubMed
Tanaka, K., Ohzawa, I., Ramoa, A.S. & Freeman, R.D. (1987). Receptive field properties of cells in area 19 of the cat. Experimental Brain Research 65, 549558.CrossRefGoogle Scholar
Toyama, K., Komatsu, Y., Shibuki, K. (1984). Integration of retinal and motor signals of eye movements in striate cortex cells of the alert cat. Journal of Neurophysiology 51, 649665.CrossRefGoogle ScholarPubMed
Tusa, R.J., Demer, J.L. & Herdman, S.J. (1989). Cortical areas involved in OKN and VOR in cats: Cortical lesions. Journal of Neuroscience 9, 11631178.CrossRefGoogle ScholarPubMed
Tusa, R.J. & Palmer, L.A. (1980). Retinotopic organization of areas 20 and 21 in the cat. Journal of Comparative Neurology 193, 147164.CrossRefGoogle ScholarPubMed
Tusa, R.J., Palmer, L.A. & Rosenquist, A.C. (1981). Multiple cortical visual areas. Visual field topography in the cat. In Cortical Sensory Organization, Vol. 2: Multiple Visual Areas, ed. Woolsey, C.N., pp. 131. Clifton, New Jersey: Humana Press.Google Scholar
Updyke, B.V. (1977). Topographic organization of the projections from cortical areas 17, 18 and 19 onto the thalamus, pretectum and superior colliculus in the cat. Journal of Comparative Neurology 173, 81122.CrossRefGoogle Scholar
Updyke, B.V. (1981). Multiple representations of the visual field. Corticothalamic and thalamic organization in the cat. In Cortical Sensory Organization, Vol. 2:Multiple Visual Areas, ed. Woolsey, C.N., pp. 83101. Clifton, New Jersey: Humana Press.Google Scholar
Updyke, B.V. (1983). A reevaluation of the functional organization and cytoarchitecture of the feline lateral posterior complex, with observations on adjoining cell groups. Journal of Comparative Neurology 219, 143181.CrossRefGoogle ScholarPubMed
Van Essen, D.C. (1985). Functional organization of primate visual cortex. In Cerebral Cortex, Vol. 3: Visual Cortex, ed. Peters, A. & Jones, E.G., pp. 259329. New York: Plenum Press.Google Scholar
Vanni-Mercier, C. & Magnin, M. (1982). Retinotopic organization of extra-retinal saccade-related input to the visual cortex in the cat. Experimental Brain Research 46, 368376.CrossRefGoogle Scholar
Wang, C, Dreher, B. & Cleland, B.G. (1991). Receptive field incongruities and binocular interactions of single neurones in area 21a of cat visual cortex. Proceedings of Australian Physiological and Pharmacological Society 22, 127P.Google Scholar
Watkins, D.W. & Berkley, M.A. (1974). The orientation selectivity of single neurons in cat striate cortex. Experimental Brain Research 19, 433446.CrossRefGoogle ScholarPubMed
Wilson, J.R. & Sherman, S.M. (1976). Receptive field characteristics of neurons in cat striate cortex: Changes with visual field eccentricity. Journal of Neurophysiology 39, 512533.CrossRefGoogle ScholarPubMed
Wimborne, B.M. & Henry, G.H. (1992). Response characteristics of the cells of cortical area 21a of the cat with special reference to orientation specificity. Journal of Physiology (London) 449, 457478.CrossRefGoogle ScholarPubMed
Wolbarsht, M.L., MacNichol, E.F. Jr, & Wagner, H.G. (1960). Glass-insulated platinum microelectrode. Science 132, 13091310.CrossRefGoogle ScholarPubMed
Yin, T.C.T. & Greenwood, M. (1992 a). Visual response properties of neurons in the middle and lateral suprasylvian cortices of the behaving cat. Experimental Brain Research 88, 114.CrossRefGoogle ScholarPubMed
Yin, T.C.T. & Greenwood, M. (1992 b). Visuomotor interactions in responses of neurons in the middle and lateral suprasylvian cortices of the behaving cat. Experimental Brain Research 88, 1532.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1969). Representation of central visual fields in prestriate cortex. Brain Research 14, 271291.CrossRefGoogle ScholarPubMed