Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T06:05:40.746Z Has data issue: false hasContentIssue false

Primate color vision: A comparative perspective

Published online by Cambridge University Press:  01 September 2008

GERALD H. JACOBS*
Affiliation:
Neuroscience Research Institute and Department of Psychology, University of California, Santa Barbara, California
*
*Address correspondence and reprint requests to: Gerald H. Jacobs, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106. E-mail: [email protected]

Abstract

Thirty years ago virtually everything known about primate color vision derived from psychophysical studies of normal and color-defective humans and from physiological investigations of the visual system of the macaque monkey, the most popular of human surrogates for this purpose. The years since have witnessed much progress toward the goal of understanding this remarkable feature of primate vision. Among many advances, investigations focused on naturally occurring variations in color vision in a wide range of nonhuman primate species have proven to be particularly valuable. Results from such studies have been central to our expanding understanding of the interrelationships between opsin genes, cone photopigments, neural organization, and color vision. This work is also yielding valuable insights into the evolution of color vision.

Type
Perspective
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrese, C.A., Beazley, L.D. & Neumeyer, C. (2006). Behavioural evidence of marsupial trichromacy. Current Biology 16, R193R194.CrossRefGoogle ScholarPubMed
Arrese, C.A., Hart, N.S., Thomas, N., Beazley, L.D. & Shand, J. (2002). Trichromacy in Australian marsupials. Current Biology 12, 657660.CrossRefGoogle ScholarPubMed
Bearder, S.K., Nekaris, K.A.I. & Curtis, D.J. (2006). A re-evaluation of the role of vision in the activity and communication of nocturnal primates. Folia Primatologica 77, 5071.CrossRefGoogle ScholarPubMed
Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L. & Purvis, A. (2007). The delayed rise of present-day mammals. Nature 446, 507512.CrossRefGoogle ScholarPubMed
Boissinot, S., Tan, Y., Shyue, S.-K., Schneider, H., Sampaio, I., Neiswanger, K., Hewett-Emmett, D. & Li, W.-H. (1998). Origins and antiquity of X-linked triallelic color vision systems in New World monkeys. Proceedings of the National Academy of Sciences U S A 95, 1374913754.CrossRefGoogle ScholarPubMed
Bowmaker, J.K. (1990). Cone visual pigments in monkeys and humans. In Advances in Photoreception, ed. Committee on Vision, pp. 1930. Washington, DC: National Academy Press.Google Scholar
Bowmaker, J.K. (2008). Evolution of vertebrate visual pigments. Vision Research 48, 20222041.CrossRefGoogle ScholarPubMed
Bowmaker, J.K., Astell, S., Hurst, D.M. & Mollon, J.D. (1991). Photosensitive and photostable pigments in the retinae of Old World monkeys. Journal of Experimental Biology 156, 119.CrossRefGoogle ScholarPubMed
Boycott, B. & Wässle, H. (1999). Parallel processing in the mammalian retina. Investigative Ophthalmology and Visual Science 40, 13131327.Google ScholarPubMed
Brown, P.K. & Wald, G. (1963). Visual pigments in human and monkey retinas. Nature 200, 3743.CrossRefGoogle ScholarPubMed
Buck, S.L. (2003). Rod-cone interactions in human vision. In The Visual Neurosciences, Vol. 1, ed. Chalupa, L.M. & Werner, J.S., pp. 863878. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Buck, S.L., Knight, R., Fowler, G. & Hunt, B. (1998). Rod influence on hue-scaling functions. Vision Research 38, 32593263.CrossRefGoogle ScholarPubMed
Calkins, D.J. (2001). Seeing with S cones. Progress in Retinal and Eye Research 20, 255287.CrossRefGoogle ScholarPubMed
Cao, D., Poicorny, J. & Smith, V.C. (2005). Matching rod percepts with cone stimuli. Vision Research 45, 21192128.CrossRefGoogle ScholarPubMed
Collin, S.P. & Trezise, A.E.O. (2004). The origins of colour vision in vertebrates. Clinical and Experimental Optometry 87, 217233.CrossRefGoogle ScholarPubMed
Dacey, D.M. (1993). The mosaic of retinal ganglion cells in the human retina. Journal of Neuroscience 13, 53245355.CrossRefGoogle ScholarPubMed
Dacey, D.M. & Lee, B.B. (1994). The “blue-on” opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731735.CrossRefGoogle Scholar
Darwin, C. (1859). On the Origin of Species. London: John Murray.Google Scholar
Davies, W.L., Carvalho, L.S., Cowing, J.A., Beazley, L.D., Hunt, D.M. & Arrese, C. (2007). Visual pigments of the platypus: A novel route to mammalian colour vision. Current Biology 17, R161R163.CrossRefGoogle ScholarPubMed
Dominy, N.J. (2004). Color as an indicator of food quality to anthropoid primates: Ecological evidence and an evolutionary scenario. In Anthropoid Origins: New Visions, ed. Ross, C.F. & Kay, R.F., pp. 615644. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Dulai, K.S., von Dornum, M., Mollon, J.D. & Hunt, D.M. (1999). The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Research 9, 629638.CrossRefGoogle ScholarPubMed
Fernandez-Duque, E. (2003). Influences of moonlight, ambient temperature, and food availability on the diurnal and nocturnal activity of owl monkeys (Aotus azarai). Behavioral Ecology and Sociobiology 54, 431440.CrossRefGoogle Scholar
Fletcher, R. & Voke, J. (1985). Defective Colour Vision: Fundamentals, Diagnosis and Management. Bristol, CT: Adam Hilger Ltd.Google Scholar
Gimenez, M. & Fernandez-Duque, E. (2003). Summer and winter diet of night monkeys in the gallery and thorn forests of the Argentinean Chaco. Revista de Etologia 5,Supplement 164.Google Scholar
Goodchild, A.K., Gosh, K.K. & Martin, P.R. (1996). Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset (Callithrix jacchus). Journal of Comparative Neurology 366, 5575.3.0.CO;2-J>CrossRefGoogle Scholar
Hart, N.S. & Hunt, D.M. (2007). Avian visual pigments: Characteristics, spectral tuning, and evolution. The American Naturalist 169, Supplement, S70/a26.CrossRefGoogle ScholarPubMed
Haverkamp, S., Wässle, H., Duebel, J., Kuner, T., Augustine, G.J., Feng, G. & Euler, T. (2005). The primordial, blue-cone color system of the mouse retina. Journal of Neuroscience 25, 54385445.CrossRefGoogle ScholarPubMed
Heesy, C.P. & Ross, C.F. (2001). Evolution of activity patterns and chromatic vision in primates: Morphometrics, genetics and cladistics. Journal of Human Evolution 40, 111149.CrossRefGoogle ScholarPubMed
Hendrickson, A., Djajadi, H.R., Nakamura, L., Possin, D.E. & Sajuthi, D. (2000). Nocturnal tarsier retina has both short and long/medium-wavelength cones in an unusual topography. Journal of Comparative Neurology 424, 718730.3.0.CO;2-Z>CrossRefGoogle Scholar
Hunt, D.M. (2006). Molecular evolution of colour vision in primates. Journal of Vision 6, 34a.CrossRefGoogle Scholar
Hunt, D.M., Cowing, J.A., Wilkie, S.E., Parry, J.W.L., Poopalasundaram, S. & Bowmaker, J.K. (2004). Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates. Photochemical and Photobiological Sciences 3, 713720.CrossRefGoogle ScholarPubMed
Hunt, D.M., Jacobs, G.H. & Bowmaker, J.K. (2005). The genetics and evolution of primate visual pigments. In The Primate Visual System: A Comparative Approach, ed. Kremers, J., pp. 73126. Chichester, UK: John Wiley & Sons Ltd.CrossRefGoogle Scholar
Hunt, D.M., Williams, A.J., Bowmaker, J.K. & Mollon, J.D. (1993). Structure and evolution of polymorphic photopigment gene of the marmoset. Vision Research 33, 147154.CrossRefGoogle ScholarPubMed
Jacobs, G.H. (1993). The distribution and nature of colour vision among the mammals. Biological Reviews 68, 413471.CrossRefGoogle ScholarPubMed
Jacobs, G.H. (1996). Primate photopigments and primate color vision. Proceedings of the National Academy of Sciences U S A 93, 577581.CrossRefGoogle ScholarPubMed
Jacobs, G.H. (1998). A perspective on color vision in platyrrhine monkeys. Vision Research 38, 33073313.CrossRefGoogle ScholarPubMed
Jacobs, G.H. (2007). New World monkeys and color. International Journal of Primatology 28, 729759.CrossRefGoogle Scholar
Jacobs, G.H. & Deegan, J.F. II. (1993). Photopigments underlying color vision in ringtail lemurs (Lemur catta) and brown lemurs (Eulemur fulvus). American Journal of Primatology 30, 243256.CrossRefGoogle Scholar
Jacobs, G.H. & Deegan, J.F. II. (1999). Uniformity of colour vision in Old World monkeys. Proceedings of the Royal Society of London B 266, 20232028.CrossRefGoogle ScholarPubMed
Jacobs, G.H. & Deegan, J.F. II. (2005). Polymorphic monkeys with more than three M/L cone types. Journal of the Optical Society of America A 22, 20722080.CrossRefGoogle ScholarPubMed
Jacobs, G.H., Deegan, J.F. II, Neitz, J.A., Crognale, M.A. & Neitz, M. (1993). Photopigments and color vision in the nocturnal monkey, Aotus. Vision Research 33, 17731783.CrossRefGoogle ScholarPubMed
Jacobs, G.H., Deegan, J.F. II, Tan, Y. & Li, W.-H. (2002). Opsin gene and photopigment polymorphism in a prosimian primate. Vision Research 42, 1118.CrossRefGoogle Scholar
Jacobs, G.H., Fenwick, J.C., Calderone, J.B. & Deeb, S.S. (1999). Human cone pigment expressed in transgenic mice yields altered vision. Journal of Neuroscience 19, 32583265.CrossRefGoogle ScholarPubMed
Jacobs, G.H., Neitz, M., Deegan, J.F. & Neitz, J. (1996 a). Trichromatic colour vision in New World monkeys. Nature 382, 156158.CrossRefGoogle ScholarPubMed
Jacobs, G.H., Neitz, M. & Neitz, J. (1996 b). Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proceedings of the Royal Society of London B 263, 705710.Google ScholarPubMed
Jacobs, G.H. & Williams, G.A. (2001). The prevalence of defective color vision in Old World monkeys and apes. Color Research and Application 26, S123S127.3.0.CO;2-6>CrossRefGoogle Scholar
Jacobs, G.H. & Williams, G.A. (2006). L and M cone proportions in polymorphic New World monkeys. Visual Neuroscience 23, 365370.CrossRefGoogle Scholar
Jacobs, G.H., Williams, G.A., Cahill, H. & Nathans, J. (2007). Emergence of novel color vision in mice engineered to express a human cone photopigment. Science 315, 17231725.CrossRefGoogle ScholarPubMed
Kainz, P.M., Neitz, J. & Neitz, M. (1998). Recent evolution of uniform trichromacy in a New World monkey. Vision Research 38, 33153320.CrossRefGoogle Scholar
Kawamura, S. & Kubotera, N. (2004). Ancestral loss of short wave-sensitive cone visual pigment in lorsiform prosimians, contrasting with its strict conservation in other prosimians. Journal of Molecular Evolution 58, 314321.CrossRefGoogle ScholarPubMed
Kelber, A. & Roth, L.S.V. (2006). Nocturnal colour vision—Not as rare as we might think. Journal of Experimental Biology 209, 781788.CrossRefGoogle ScholarPubMed
Kielan-Jaworowska, Z., Cifelli, R.L. & Luo, Z.-X. (2004). Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure. New York: Columbia University Press.CrossRefGoogle Scholar
Kremers, J. & Lee, B.B. (1998). Comparative retinal physiology in Anthropoids. Vision Research 38, 33393344.CrossRefGoogle ScholarPubMed
Kryger, Z., Galli-Resta, L., Jacobs, G.H. & Reese, B.E. (1998). The topography of rod and cone photoreceptors in the retina of the ground squirrel. Visual Neuroscience 15, 685691.CrossRefGoogle ScholarPubMed
Lee, B.B. (2004). Paths to colour in the retina. Clinical and Experimental Optometry 87, 239248.CrossRefGoogle ScholarPubMed
Levenson, D.H., Fernandez-Duque, E., Evans, S. & Jacobs, G.H. (2007). Mutational changes in S-cone opsin genes common to both nocturnal and cathemeral Aotus monkeys. American Journal of Primatology 69, 757765.CrossRefGoogle ScholarPubMed
Li, W. & DeVries, S.H. (2006). Bipolar cell pathways for color and human vision in a dichromatic mammalian retina. Nature Neuroscience 9, 669675.CrossRefGoogle Scholar
Macdonald, D., ed. (2001). The New Encyclopedia of Mammals. Oxford: Oxford University Press.Google Scholar
MacNeil, M.A. & Gaul, P.A. (2008). Biocytin wide-field bipolar cells in rabbit retina selectively contact blue cones. Journal of Comparative Neurology 506, 615.CrossRefGoogle ScholarPubMed
Makous, W. (2004). Scotopic vision. In The Visual Neurosciences, Vol. 1, ed. Chalupa, L.M. & Werner, J.S., pp. 838850. Cambridge, MA: MIT Press.Google Scholar
Marks, W.B., Dobelle, W.H. & MacNichol, E.F.J. (1964). Visual pigments of single primate cones. Science 143, 11811183.CrossRefGoogle ScholarPubMed
Martin, P.R. (1998). Colour processing in the retina: Recent progress. Journal of Physiology 513, 631638.CrossRefGoogle ScholarPubMed
Martin, R.D. (1990). Primate Origins and Evolution. Princeton, NJ: Princeton University Press.Google Scholar
Martin, R.D. & Ross, C.F. (2005). The evolutionary and ecological context of primate vision. In The Primate Visual System: A Comparative Approach, ed. Kremers, J.West Sussex, UK: John Wiley & Sons, Ltd.Google Scholar
Martin, R.D., Soligo, C. & Tavare, S. (2007). Primate origins: Implications of a cretaceous ancestry. Folia Primatologica 78, 277296.CrossRefGoogle ScholarPubMed
Masland, R.H. (2001). The fundamental plan of the retina. Nature Neuroscience 4, 877886.CrossRefGoogle ScholarPubMed
McMahon, M.J., Lankheet, M.J., Lennie, P. & Williams, D.A. (2000). Fine structure of parvocellular receptive fields in the primate fovea revealed by laser interferometry. Journal of Neuroscience 20, 20432053.CrossRefGoogle ScholarPubMed
Mollon, J.D. (2003). The origins of modern color science. In The Science of Color, ed. Shevell, S.K., pp. 139. Amsterdam, The Netherlands: Elsevier.Google Scholar
Mollon, J.D., Bowmaker, J.K. & Jacobs, G.H. (1984). Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proceedings of the Royal Society of London B 222, 373399.Google Scholar
Müller, B. & Peichl, L. (1989). Topography of cones and rods in the tree shrew retina. Journal of Comparative Neurology 282, 581594.CrossRefGoogle ScholarPubMed
Nathans, J., Thomas, D. & Hogness, D.S. (1986). Molecular genetics of human color vision: The genes encoding blue, green and red pigments. Science 232, 193202.CrossRefGoogle ScholarPubMed
Neitz, M. & Neitz, J. (2003). Molecular genetics of human color vision and color vision defects. In The Visual Neurosciences, Vol. 2, ed. Chalupa, L.M. & Werner, J.S., pp. 974988. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Neitz, M., Neitz, J. & Jacobs, G.H. (1991). Spectral tuning of pigments underlying red-green color vision. Science 252, 971974.CrossRefGoogle ScholarPubMed
Ni, X., Wang, Y., Hu, Y. & Li, C. (2003). A euprimate skull from the early Eocene of China. Nature 427, 6568.CrossRefGoogle Scholar
Onishi, A., Hasegawa, J., Imai, H., Chisaka, O., Ueda, Y., Honda, Y., Tachibana, M. & Shichida, Y. (2005). Generation of knock-in mice carrying third cones with spectral sensitivity different from S and L cones. Zoological Science 22, 11451156.CrossRefGoogle ScholarPubMed
Onishi, A., Koike, S., Ida, M., Imai, H., Schichida, Y., Osamu, T., Hanazawa, A.Konatsu, H., Mikami, A., Goto, S., Suryobroto, B., Kitahara, K. & Yamamori, T. (1999). Dichromatism in macaque monkeys. Nature 402, 139140.CrossRefGoogle ScholarPubMed
Osorio, D., Smith, A.C., Vorobyev, M. & Buchanan-Smith, H.M. (2004). Detection of fruit and the selection of primate visual pigments for color vision. American Naturalist 164, 696708.CrossRefGoogle ScholarPubMed
Peichl, L. (2005). Diversity of mammalian photoreceptor properties: Adaptations to habitat and lifestyle? Anatomical Record A 287A, 10011012.CrossRefGoogle Scholar
Perry, G.H., Martin, R.D. & Verelli, B.C. (2007). Signatures of functional constraint at aye-aye opsin genes: The potential of adaptive color vision in a nocturnal primate. Molecular Biology and Evolution 24, 19631970.CrossRefGoogle Scholar
Post, R.H. (1962). Population differences in red and green color vision deficiency: A review, and query on selection relaxation. Eugenics Quarterly 9, 131146.CrossRefGoogle ScholarPubMed
Regan, B.C., Julliot, C., Simmen, B., Vienot, F., Charles-Dominique, P. & Mollon, J.D. (2001). Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London B 356, 229283.CrossRefGoogle ScholarPubMed
Ross, C.F. & Martin, R.D. (2007). The role of vision in the origin and evolution of primates. In Evolution of Nervous Systems. Vol. 4: The Evolution of Primate Nervous Systems, ed. Preuss, T.M. & Kaas, J., pp. 5978. Oxford: Elsevier.CrossRefGoogle Scholar
Sagdullaev, B.T. & McCall, M.A. (2005). Stimulus size and intensity alter fundamental receptive field properties of mouse retinal ganglion cells in vivo. Visual Neuroscience 22, 649659.CrossRefGoogle ScholarPubMed
Saito, C.A., da Silva-Filho, M., Lee, B.B., Bowmaker, J.K., Kremers, J. & Silveira, L.C.L. (2004). Alouatta trichromatic color vision—Single-unit recording from retinal ganglion cells and micro spectrophotometry. Investigative Ophthalmology and Visual Science 45, E-abstract 4276.Google Scholar
Schmitz, J., Ohme, M. & Zischler, H. (2001). SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates. Genetics 157, 777784.CrossRefGoogle ScholarPubMed
Schrago, C.G. (2007). On the time scale of New World primate diversification. American Journal of Physical Anthropology 132, 344354.CrossRefGoogle ScholarPubMed
Seiffert, E.R., Simons, E.L., Clyde, W.C., Rossie, J.B., Attia, Y., Brown, T.M., Chatrath, P. & Mathison, M.E. (2005). Basal anthropoids from Egypt and the antiquity of Africa's higher primate radiation. Science 310, 300304.CrossRefGoogle ScholarPubMed
Shaaban, S.A., Crognale, M.A., Calderone, J.B., Huang, J., Jacobs, G.H. & Deeb, S.S. (1998). Transgenic mice expressing a functional human photopigment. Investigative Ophthalmology and Visual Science 39, 10361043.Google ScholarPubMed
Silveira, L.C.L., Lee, B.B., Yamada, E.S., Kremers, J., Hunt, D.M., Martin, P.R. & Gomes, F.L. (1999). Ganglion cells of short-wavelength-sensitive pathway in New World monkeys: Morphology and physiology. Visual Neuroscience 16, 333343.CrossRefGoogle ScholarPubMed
Silveira, L.C.L., Saito, C.A., Lee, B.B., Kremers, J., Filho, M.S., Kilavik, B.E., Yamada, E.S. & Perry, V.H. (2004). Morphology and physiology of primate M- and P-cells. In The Roots of Visual Awareness, ed. Heywood, C.A., Milner, A.D. & Blakemore, C., pp. 2146. Amsterdam, The Netherlands: Elsevier.Google Scholar
Smallwood, P.M., Olveczky, B.P., Williams, G.A., Jacobs, G.H., Reese, B.E., Meister, M. & Nathans, J. (2003). Genetically engineered mice with an additional class of cone photoreceptors: Implications for the evolution of color vision. Proceedings of the National Academy of Sciences U S A 100, 1170611711.CrossRefGoogle ScholarPubMed
Smallwood, P.M., Wang, Y. & Nathans, J. (2002). Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes. Proceedings of the National Academy of Sciences U S A 99, 10081011.CrossRefGoogle ScholarPubMed
Smith, V.C. & Pokorny, J. (1977). Large-field trichromacy in protanopes and deuteranopes. Journal of the Optical Society of America 67, 213220.CrossRefGoogle ScholarPubMed
Smith, V.C. & Pokorny, J. (2003). Color matching and color discrimination. In The Science of Color, ed. Shevell, S.K., pp. 103148. Amsterdam, The Netherlands: Elsevier.CrossRefGoogle Scholar
Solomon, S.G. & Lennie, P. (2007). The machinery of colour vision. Nature Neuroscience Reviews 8, 276286.CrossRefGoogle ScholarPubMed
Steiper, M.E. & Young, N.M. (2006). Primate molecular divergence dates. Molecular Phylogenetics and Evolution 41, 384394.CrossRefGoogle ScholarPubMed
Surridge, A.K. & Mundy, N.I. (2002). Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in callitrichine primates. Molecular Ecology 11, 21572169.CrossRefGoogle ScholarPubMed
Tan, Y. & Li, W.-H. (1999). Trichromatic vision in prosimians. Nature 402, 36.CrossRefGoogle ScholarPubMed
Tan, Y., Yoder, A.D., Yamashita, N. & Li, W.-H. (2005). Evidence from opsin genes rejects nocturnality in ancestral primates. Proceedings of the National Academy of Sciences U S A 41, 1471214716.CrossRefGoogle Scholar
Tattersal, I. (2006). The concept of cathemerality: History and definition. Folia Primatologica 77, 714.CrossRefGoogle Scholar
Vorobyev, M. (2004). Ecology and evolution of primate colour vision. Clinical and Experimental Optometry 87, 230238.CrossRefGoogle ScholarPubMed
Walls, G.L. (1942). The Vertebrate Eye and Its Adaptive Radiation. Bloomfield Hills, MI: Cranbrook Institute of Science.Google Scholar
Wang, Y., Macke, J.P., Merbs, S.L., Zack, D.J., Klaunberg, B., Bennett, J., Gearhart, J. & Nathans, J. (1992). A locus control region adjacent to the human red and green visual pigment genes. Neuron 9, 429440.CrossRefGoogle Scholar
Wässle, H. (2004). Parallel processing in the mammalian retina. Nature Neuroscience 19, 747757.CrossRefGoogle Scholar
Wässle, H. & Boycott, B.B. (1991). Functional architecture of the mammalian retina. Physiological Reviews 71, 447480.CrossRefGoogle ScholarPubMed
Wyszecki, G. & Stiles, W.S. (1982). Color Science. New York: Wiley.Google Scholar
Yamada, E.S., Marshak, D.W., Silveira, L.C.L. & Casagrande, V.A. (1998). Morphology of P and M retinal ganglion cells of the bush baby. Vision Research 38, 33453352.CrossRefGoogle Scholar
Yeh, T., Lee, B.B., Kremers, J., Cowing, J.A., Hunt, D.M., Martin, P.R. & Troy, J.B. (1995). Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus). Journal of Neuroscience 15, 78927904.CrossRefGoogle ScholarPubMed
Yokoyama, S. (2000). Molecular evolution of vertebrate visual pigments. Progress in Retinal and Eye Research 19, 385419.CrossRefGoogle ScholarPubMed
Yokoyama, S. & Radlwimmer, F.B. (1999). The molecular genetics of red and green color vision in mammals. Genetics 153, 919932.CrossRefGoogle ScholarPubMed
Zhang, J. (2003). Evolution by gene duplication: An update. Trends in Ecology and Evolution 18, 292298.aCrossRefGoogle Scholar