Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T14:00:11.485Z Has data issue: false hasContentIssue false

On the directional selectivity of cells in the visual cortex to drifting dot patterns

Published online by Cambridge University Press:  02 June 2009

Bernt C. Skottun
Affiliation:
Department of Psychology, University of California, Berkeley
Jun Zhang
Affiliation:
Department of Psychology, University of California, Berkeley
David H. Grosof
Affiliation:
Department of Psychology, University of California, Berkeley

Abstract

It is well established that cortical neurons frequently show different preferred drift directions for random dots and gratings. Dot stimuli often produce two preferred directions which are arranged symmetrically on either side of the preferred directions for gratings. Based on their filter properties in three-dimensional (3-D) Fourier space and on the 3-D power spectra of drifting dot patterns, we estimated the optimal direction to drifting dots for ten neurons in the striate cortex of five adult cats. These estimates frequently gave two optimal directions, one on either side of the optimal direction to gratings. The angle between the two estimated peaks increases with drift speed. Predicted and actual angles were in reasonably good agreement. We conclude, therefore, that the directional selectivity of cortical neurons to drifting random dot patterns can be understood from linear filtering properties. For this reason, the directional tuning to drifting dot patterns seems to reflect the same mechanisms that mediate the responses to sinusoidal gratings and do not require a separate directional mechanism.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albright, T.D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology 52, 11061130.CrossRefGoogle ScholarPubMed
Bauer, R. & Jordan, W. (1993). Different anisotropies for texture and grating stimuli in the visual map of cat striate cortex. Vision Research 33, 14471450.CrossRefGoogle ScholarPubMed
Bradley, A., Skottun, B.C., Ohzawa, I., Sclar, G. & Freeman, R.D. (1987). Visual orientation and spatial frequency discrimination: A comparison of single neurons and behavior. Journal of Neurophysiology 57, 755772.CrossRefGoogle ScholarPubMed
Campbell, F.W., Cleland, B.G., Cooper, C.F. & Enroth-Cugell, C. (1968). The angular selectivity of visual cortical cells to moving gratings. Journal of Physiology 198, 237250.CrossRefGoogle ScholarPubMed
Campbell, F.W., Cooper, C.F. & Enroth-Cugell, C. (1969). The spatial selectivity of the visual cells of the cat. Journal of Physiology 203, 223235.CrossRefGoogle ScholarPubMed
Casanova, C. (1993). Responses of cells in cat's area 17 to random dot patterns: Influence of stimulus size. NeuroReport 4, 10111014.CrossRefGoogle ScholarPubMed
Davis, E.T. & Movshon, J.A. (1980). Direction selectivity in cortical complex cells. Investigative Ophthalmology and Visual Science (Suppl.) 19, 223224.Google Scholar
Dean, A.F. (1981). The variability of discharge of simple cells in the cat striate cortex. Experimental Brain Research 44, 437440.CrossRefGoogle ScholarPubMed
De Valois, K.K., De Valois, R.L. & Yund, E.W. (1979). Responses of striate cortex cells to grating and checkerboard patterns. Journal of Physiology 291, 483505.CrossRefGoogle ScholarPubMed
Emerson, R.C., Citron, M.C., Vaugh, W.J. & Klein, S.A. (1987). Nonlinear directionally selective subunits in complex cells of cat striate cortex. Journal of Neurophysiology 58, 3365.CrossRefGoogle ScholarPubMed
Fahle, M. & Poggio, T. (1981). Visual hyperacuity: Spatiotemporal interpolation in human vision. Procedings of the Royal Society B (London) 213, 451477.Google ScholarPubMed
Grosof, D.H., Skottun, B.C. & De Valois, R.L. (1985). Linearity of cat cortical cells: Responses to 2-D stimuli. Investigative Ophthalmology and Visual Science (Suppl.) 26, 265.Google Scholar
Grzywacz, N.M. & Yuille, A.L. (1990). A model for the estimate of local image velocity by cells in the visual cortex. Procedings of the Royal Society B (London) 239, 129161.Google Scholar
Grzywacz, N.M. & Yuille, A.L. (1991). Theories for the visual perception of local velocity and coherent motion. In Computational Modelsof Visual Processing, ed. Landy, M.S. & Movshon, J.A., pp. 231252. Cambridge, Massachusetts: MIT Press.Google Scholar
Gulyás, B., Orban, G.A., Duysens, J. & Maes, H. (1987). The sup-pressive influence of moving textured backgrounds on responses of cat striate neurons to moving bars. Journal of Neurophysiology 57, 17671791.CrossRefGoogle ScholarPubMed
Hamilton, D.B., Albrecht, D.G. & Geisler, W.S. (1989). Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function. Vision Research 29, 12851308.CrossRefGoogle ScholarPubMed
Hammond, P. (1978). Directional tuning of complex cells in area 17 of the feline visual cortex. Journal of Physiology 285, 479491.CrossRefGoogle ScholarPubMed
Hammond, P. (1981). Simultaneous determination of directional tuning of complex cells in cat striate cortex for bar and texture motion. Experimental Brain Research 41, 364369.Google ScholarPubMed
Hammond, P. & Mackay, D.M. (1975). Differential responses of cat visual cortical cells to textured stimuli. Experimental Brain Research 22, 427430.CrossRefGoogle Scholar
Hammond, P. & Mackay, D.M. (1977). Differential responsiveness of simple and complex cells in cat striate cortex to visual texture. Experimental Brain Research 30, 275296.Google ScholarPubMed
Hammond, P. & Reck, J. (1980). Influence of velocity on directional tuning of complex cells in cat striate cortex for texture motion. Neuroscience Letters 19, 309314.CrossRefGoogle ScholarPubMed
Holub, R.A. & Morton-Gibson, M. (1981). Response of visual cortical neurons of the cat to moving sinusoidal gratings: Response-contrast functions and spatio-temporal interactions. Journal of Neurophysiology 46, 12441259.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160, 106154.CrossRefGoogle ScholarPubMed
Ikeda, H. & Wright, M.J. (1975). Spatial and temporal properties of ‘sustained’ and ‘transient’ neurones in area 17 of the cat's visual cortex. Experimental Brain Research 22, 363383.Google Scholar
Morrone, M.C., Burr, D.C. & Maffel, L. (1982). Functional implications of cross-orientation inhibition of cortical visual cells. I. Neuro-physiological evidence. Proceedings of the Royal Society B (London) 216, 335354.Google ScholarPubMed
Movshon, J.A., Davis, E.T. & Adelson, E.H. (1980). Directional movement selectivity in cortical complex cells. Society for Neuroscience Abstracts 6, 670.Google Scholar
Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978). Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. Journal of Physiology 283, 101120.CrossRefGoogle ScholarPubMed
Movshon, J.A., Adelson, E.H., Gizzi, M.S. & Newsome, W.T. (1985). The analysis of moving visual patterns. In Pattern Recognition Mechanisms ed. Chagas, C., Gattass, R. & Gross, C., pp. 117151. The Vatican: Pontificia Academia Scientiarium.CrossRefGoogle Scholar
Reid, R.C., Soodak, R.E., & Shapley, R.M. (1987). Linear mechanisms of direction selectivity in simple cells of cat striate cortex. Proceedings of the National Academy of Science, 84, 87408744.CrossRefGoogle ScholarPubMed
Rodman, H.R. & Albright, T.D. (1989). Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (MT). Experimental Brain Research 75, 5364.CrossRefGoogle ScholarPubMed
Shadlen, M.N., Newsome, W.T. & Zohary, E. (1993). Integration of local motion signals in area MT. Society of Neuroscience Abstracts 19, 1282.Google Scholar
Skottun, B.C. (1987). Neurophysiology and perception: Studies of the visual system. Ph.D. Dissertation, University of California, Berkeley.Google Scholar
Skottun, B.C. & Freeman, R.D. (1984). Stimulus specificity of binocular cells in the cat's visual cortex: Ocular dominance and the matching of left and right eyes. Experimental Brain Research 56, 206216.CrossRefGoogle ScholarPubMed
Skottun, B.C., Grosof, D.H. & De Valois, R.L. (1988). Responses of simple and complex cells to random dot patterns: A quantitative comparison. Journal of Neurophysiology 59, 17191735.CrossRefGoogle ScholarPubMed
Skottun, B.C., Grosof, D.H. & De Valois, R.L. (1991 a). Letter to the editors —On the responses of simple and complex cells to random dot patterns. Vision Research 31, 4346.CrossRefGoogle Scholar
Skottun, B.C., De Valois, R.L., Grosof, D.H., Movshon, J.A., Albrecht, D.G. & Bonds, A.B. (1991 b). Minireview —Classifying simple and complex cells on the basis of response modulation. Vision Research 31, 10791086.CrossRefGoogle Scholar
Snowden, R.J., Treue, S. & Andersen, R.A. (1992). The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns. Experimental Brain Research 88, 389400.CrossRefGoogle ScholarPubMed
Spitzer, H. & Hochstein, S. (1985). A complex-cell receptive field model. Journal of Neurophysiology 53, 12661286.CrossRefGoogle ScholarPubMed
Tolhurst, D.J. & Movshon, J.A. (1975). Spatial and temporal contrast sensitivity of striate cortical neurones. Nature 257, 674675.CrossRefGoogle ScholarPubMed
Tolhurst, D.J. & Thompson, I.D. (1981). On the variety of spatial frequency selectivities shown by neurons in the area 17 of the cat. Proceedings of the Royal Society B (London) 213, 183199.Google ScholarPubMed
Tolhurst, D.J., Movshon, J.A. & Dean, A.F. (1983). The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research 23, 775785.CrossRefGoogle Scholar
Watson, A.B. & Ahumada, A.J. (1985). Model of human visual-motion sensing. Journal of the Optical Society of America A 2, 322341.CrossRefGoogle ScholarPubMed
Webster, M.A. & De Valois, R.L. (1985). Relationship between spatial-frequency and orientation tuning of striate-cortex cells. Journal of the Optical Society of America A 2, 11241132.CrossRefGoogle ScholarPubMed
Wörgötter, F. & Eysel, U.T. (1987). Quantitative determination of orientational and directional components in the response of visual cortical cells to moving stimuli. Biological Cybernetics 57, 349355.CrossRefGoogle ScholarPubMed
Wörgötter, F. & Eysel, U.T. (1989). Axis of preferred motion is a function of bar length in visual cortical receptive fields. Experimental Brain Research 76, 307314.CrossRefGoogle ScholarPubMed
Wörgötter, F. & Eysel, U.T. (1991). Axial responses in visual cortical cells: Spatio-temporal mechanisms quantified by Fourier components of cortical tuning curves. Experimental Brain Research 83, 656664.CrossRefGoogle ScholarPubMed
Wörgötter, F., Muche, T. & Eysel, U.T. (1991). Correlations between directional and orientational tuning of cells in cat striate cortex. Experimental Brain Research 83, 665669.CrossRefGoogle ScholarPubMed
Zar, J.H. (1984). Biostatistical Analysis. 2nd edition, Englewood Cliffs, New Jersey: Prentice-Hall, Inc.Google Scholar
Zhang, J. (1990). How to unconfound directional and orientational information in visual neuron's response. Biological Cybernetics 63, 135142.CrossRefGoogle ScholarPubMed