Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T07:23:34.850Z Has data issue: false hasContentIssue false

A novel rhodopsin-like gene expressed in zebrafish retina

Published online by Cambridge University Press:  29 March 2011

JAMES M. MORROW
Affiliation:
Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
SAVO LAZIC
Affiliation:
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
BELINDA S.W. CHANG*
Affiliation:
Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
*
Address correspondence and reprint requests to: Dr. Belinda Chang, Departments of Ecology & Evolutionary/Cell & Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada. E-mail: [email protected]

Abstract

The visual pigment rhodopsin (rh1) constitutes the first step in the sensory transduction cascade in the rod photoreceptors of the vertebrate eye, forming the basis of vision at low light levels. In most vertebrates, rhodopsin is a single-copy gene whose function in rod photoreceptors is highly conserved. We found evidence for a second rhodopsin-like gene (rh1-2) in the zebrafish genome. This novel gene was not the product of a zebrafish-specific gene duplication event and contains a number of unique amino acid substitutions. Despite these differences, expression of rh1-2in vitro yielded a protein that not only bound chromophore, producing an absorption spectrum in the visible range (λmax ≈ 500 nm), but also activated in response to light. Unlike rh1, rh1-2 is not expressed during the first 4 days of embryonic development; it is expressed in the retina of adult fish but not the brain or muscle. Similar rh1-2 sequences were found in two other Danio species, as well as a more distantly related cyprinid, Epalzeorhynchos bicolor. While sequences were only identified in cyprinid fish, phylogenetic analyses suggest an older origin for this gene family. Our study suggests that rh1-2 is a functional opsin gene that is expressed in the retina later in development. The discovery of a new previously uncharacterized opsin gene in zebrafish retina is surprising given its status as a model system for studies of vertebrate vision and visual development.

Type
Evolution and eye design
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahuja, S., Hornak, V., Yan, E.C., Syrett, N., Goncalves, J.A., Hirshfeld, A., Ziliox, M., Sakmar, T.P., Sheves, M., Reeves, P.J., Smith, S.O. & Eilers, M. (2009). Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nature Structural & Molecular Biology 16, 168175.CrossRefGoogle ScholarPubMed
Altimus, C.M., Güler, A.D., Villa, K.L., McNeill, D.S., Legates, T.A. & Hattar, S. (2008). Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proceedings of the National Academy of Sciences of the United States of America 105, 1999820003.CrossRefGoogle ScholarPubMed
Amacher, S.L. (2008). Emerging gene knockout technology in zebrafish: Zinc-finger nucleases. Briefings in Functional Genomics & Proteomics 7, 460464.CrossRefGoogle ScholarPubMed
Amsterdam, A. & Becker, T.S. (2005). Transgenes as screening tools to probe and manipulate the zebrafish genome. Developmental Dynamics 234, 255268.CrossRefGoogle ScholarPubMed
Archer, S., Hope, A. & Partridge, J.C. (1995). The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proceedings. Biological Sciences / The Royal Society 262, 289295.Google ScholarPubMed
Arnis, S., Fahmy, K., Hofmann, K.P. & Sakmar, T.P. (1994). A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. The Journal of Biological Chemistry 269, 2387923881.CrossRefGoogle ScholarPubMed
Beatty, D.D. (1975). Visual pigments of the American eel Anguilla rostrata. Vision Research 15, 771776.CrossRefGoogle ScholarPubMed
Bellingham, J., Chaurasia, S.S., Melyan, Z., Liu, C., Cameron, M.A., Tarttelin, E.E., Luvone, P.M., Hankins, M.W., Tosini, G. & Lucas, R.J. (2006). Evolution of melanopsin photoreceptors: Discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biology 4, e254.CrossRefGoogle ScholarPubMed
Bellingham, J., Tarttelin, E.E., Foster, R.G. & Wells, D.J. (2003). Structure and evolution of the teleost extraretinal rod-like opsin (errlo) and ocular rod opsin (rho) genes: Is teleost rho a retrogene? Journal of Experimental Zoology. Part B, Molecular & Developmental Evolution 297, 110.CrossRefGoogle Scholar
Bellingham, J., Whitmore, D., Philp, A.R., Wells, D.J. & Foster, R.G. (2002). Zebrafish melanopsin: Isolation, tissue localisation and phylogenetic position. Brain Research. Molecular Brain Research 107, 128136.CrossRefGoogle ScholarPubMed
Bilotta, J. & Saszik, S. (2001). The zebrafish as a model visual system. International Journal of Developmental Neuroscience 19, 621629.CrossRefGoogle ScholarPubMed
Bosch, L., Ramon, E., del Valle, L.J. & Garriga, P. (2003). Structural and functional role of helices I and II in rhodopsin: A novel interplay evidenced by mutations at GLY-51 and GLY-89 in the transmembrane domain. The Journal of Biological Chemistry 278, 2020320209.CrossRefGoogle Scholar
Bowmaker, J.K. (2008). Evolution of vertebrate visual pigments. Vision Research 48, 20222041.CrossRefGoogle ScholarPubMed
Burns, M.E. & Baylor, D.A. (2001). Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annual Review of Neuroscience 24, 779805.CrossRefGoogle ScholarPubMed
Carleton, K.L., Spady, T.C. & Cote, R.H. (2005). Rod and cone opsin families differ in spectral tuning domains but not signal transducing domains as judged by saturated evolutionary trace analysis. Journal of Molecular Evolution 61, 7589.CrossRefGoogle Scholar
Chang, C.H., Chiao, C.C. & Yan, H.Y. (2009). Ontogenetic changes in color vision in the milkfish (Chanos chanos Forsskal, 1775). Zoological Science 26, 349355.CrossRefGoogle ScholarPubMed
Chang, B.S.W., Jönsson, K., Kazmi, M.A., Donoghue, M.J. & Sakmar, T.P. (2002). Recreating a functional ancestral archosaur visual pigment. Molecular Biology & Evolution 19, 14831489.CrossRefGoogle ScholarPubMed
Chen, W.J., Bonillo, C. & Lecointre, G. (2003). Repeatability of clades as a criterion of reliability: A case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Molecular Phylogenetics & Evolution 26, 262288.CrossRefGoogle ScholarPubMed
Chinen, A., Hamaoka, T., Yamada, Y. & Kawamura, S. (2003). Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 163, 663675.CrossRefGoogle ScholarPubMed
Dacey, D.M., Liao, H.W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokorny, J., Yau, K.W. & Gamlin, P.D. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749754.CrossRefGoogle Scholar
Davidson, F.F., Loewen, P.C. & Khorana, H.G. (1994). Structure and function in rhodopsin: Replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state. Proceedings of the National Academy of Sciences of the United States of America 91, 40294033.CrossRefGoogle ScholarPubMed
Dehal, P. & Boore, J.L. (2005). Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biology 3, e314.CrossRefGoogle ScholarPubMed
DeLano, W.L. (2008). The PyMOL Molecular Graphics System. Palo Alto, CA: DeLano Scientific LLC. http//www.pymol.orgGoogle Scholar
Dulai, K.S., von Dornum, M., Mollon, J.D. & Hunt, D.M. (1999). The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Research 9, 629638.CrossRefGoogle ScholarPubMed
Ebrey, T. & Koutalos, Y. (2001). Vertebrate photoreceptors. Progress in Retinal & Eye Research 20, 4994.CrossRefGoogle ScholarPubMed
Ernst, O.P., Hofmann, K.P. & Sakmar, T.P. (1995). Characterization of rhodopsin mutants that bind transducin but fail to induce GTP nucleotide uptake. The Journal of Biological Chemistry 270, 1058010586.CrossRefGoogle ScholarPubMed
Ernst, O.P., Meyer, C.K., Marin, E.P., Henklein, P., Fu, W.Y., Sakmar, T.P. & Hofmann, K.P. (2000). Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin alpha and gamma subunits. The Journal of Biological Chemistry 275, 19371943.CrossRefGoogle ScholarPubMed
Fadool, J.M. & Dowling, J.E. (2008). Zebrafish: A model system for the study of eye genetics. Progress in Retinal & Eye Research 27, 89110.CrossRefGoogle Scholar
Fanelli, F. & Dell’Orco, D. (2008). Dark and photoactivated rhodopsin share common binding modes to transducin. FEBS Letters 582, 991996.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783791.CrossRefGoogle ScholarPubMed
Fitzgibbon, J., Hope, A., Slobodyanyuk, S.J., Bellingham, J., Bowmaker, J.K. & Hunt, D.M. (1995). The rhodopsin-encoding gene of bony fish lacks introns. Gene 164, 273277.CrossRefGoogle ScholarPubMed
Fleisch, V.C. & Neuhauss, S.C. (2006). Visual behavior in zebrafish. Zebrafish 3, 191201.CrossRefGoogle ScholarPubMed
Forey, P.L., Littlewood, D.T.J., Ritchie, P. & Meyer, A. (1996). Relationships of elopomorphs. In Interrelationships of Fishes, ed. Greenwood, P.H., Miles, R.S. & Patterson, C., pp. 351368. London: Academic Press.Google Scholar
Franke, R.R., Sakmar, T.P., Graham, R.M. & Khorana, H.G. (1992). Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. The Journal of Biological Chemistry 267, 1476714774.CrossRefGoogle ScholarPubMed
Gelman, A. & Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7, 457511.CrossRefGoogle Scholar
Grone, B.P., Zhao, S., Chen, C. & Fernald, R.D. (2007). Localization and diurnal expression of melanopsin, vertebrate ancient opsin, and pituitary adenylate cyclase-activating peptide mRNA in a teleost retina. Journal of Biological Rhythms 22, 558561.CrossRefGoogle Scholar
Guindon, S. & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.CrossRefGoogle ScholarPubMed
Guindon, S., Lethiec, F., Duroux, P. & Gascuel, O. (2005). PHYML Online–a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Research 33, W557W559.CrossRefGoogle ScholarPubMed
Halpern, M.E., Rhee, J., Goll, M.G., Akitake, C.M., Parsons, M. & Leach, S.D. (2008). Gal4/UAS transgenic tools and their application to zebrafish. Zebrafish 5, 97110.CrossRefGoogle ScholarPubMed
Hannibal, J., Hindersson, P., Nevo, E. & Fahrenkrug, J. (2002). The circadian photopigment melanopsin is expressed in the blind subterranean mole rat, Spalax. Neuroreport 13, 14111414.CrossRefGoogle ScholarPubMed
Hope, A.J., Partridge, J.C. & Hayes, P.K. (1998). Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.). Proceedings. Biological Sciences / The Royal Society 265, 869874.CrossRefGoogle ScholarPubMed
Hurley, I.A., Mueller, R.L., Dunn, K.A., Schmidt, E.J., Friedman, M., Ho, R.K., Prince, V.E., Yang, Z., Thomas, M.G. & Coates, M.I. (2007). A new time-scale for ray-finned fish evolution. Proceedings. Biological Sciences / The Royal Society 274, 489498.CrossRefGoogle ScholarPubMed
Hwa, J., Reeves, P.J., Klein-Seetharaman, J., Davidson, F. & Khorana, H.G. (1999). Structure and function in rhodopsin: Further elucidation of the role of the intradiscal cysteins, Cys-110, -185, and -187, in rhodopsin folding and function. Proceedings of the National Academy of Sciences of the United States of America 96, 19321935.CrossRefGoogle ScholarPubMed
Iannaccone, A., Man, D., Waseem, N., Jennings, B.J., Ganapathiraju, M., Gallaher, K., Reese, E., Bhattacharya, S.S, & Klein-Seetharaman, J. (2006). Retinitis pigmentosa associated with rhodopsin mutations: Correlation between phenotypic variability and molecular effects. Vision Research 46, 45564567.CrossRefGoogle ScholarPubMed
Imai, H., Kefalov, V., Sakurai, K., Chisaka, O., Ueda, Y., Onishi, A., Morizumi, T., Fu, Y., Ichikawa, K., Nakatani, K., Honda, Y., Chen, J., Yau, K.W. & Shichida, Y. (2007). Molecular properties of rhodopsin and rod function. The Journal of Biological Chemistry 282, 66776684.CrossRefGoogle ScholarPubMed
Imai, H., Kojima, D., Oura, T., Tachibanaki, S., Terakita, A. & Shichida, Y. (1997). Single amino acid residue as a functional determinant of rod and cone visual pigments. Proceedings of the National Academy of Sciences of the United States of America 94, 23222326.CrossRefGoogle ScholarPubMed
Johnson, R.L., Grant, K.B., Zankel, T.C., Boehm, M.F., Merbs, S.L., Nathans, J. & Nakanishi, K. (1993). Cloning and expression of goldfish opsin sequences. Biochemistry 32, 208214.CrossRefGoogle ScholarPubMed
Kaushal, S., Ridge, K.D. & Khorana, H.G. (1994). Structure and function in rhodopsin: The role of asparagine-linked glycosylation. Proceedings of the National Academy of Sciences of the United States of America 91, 40244028.CrossRefGoogle ScholarPubMed
Knierim, B., Hofmann, K.P., Ernst, O.P. & Hubbell, W.L. (2007). Sequence of late molecular events in the activation of rhodopsin. Proceedings of the National Academy of Sciences of the United States of America 104, 2029020295.CrossRefGoogle ScholarPubMed
Kojima, D., Torii, M., Fukada, Y. & Dowling, J.E. (2008). Differential expression of duplicated VAL-opsin genes in the developing zebrafish. Journal of Neurochemistry 104, 13641371.CrossRefGoogle ScholarPubMed
König, B., Arendt, A., McDowell, J.H., Kahlert, M., Hargrave, P.A. & Hofmann, K.P. (1989). Three cytoplasmic loops of rhodopsin interact with transducin. Proceedings of the National Academy of Sciences of the United States of America 86, 68786882.CrossRefGoogle ScholarPubMed
Koyanagi, M., Kawano, E., Kinugawa, Y., Oishi, T., Shichida, Y., Tamotsu, S. & Terakita, A. (2004). Bistable UV pigment in the lamprey pineal. Proceedings of the National Academy of Sciences of the United States of America 101, 66876691.CrossRefGoogle ScholarPubMed
Kuwayama, S., Imai, H., Hirano, T., Terakita, A. & Shichida, Y. (2002). Conserved proline residue at position 189 in cone visual pigments as a determinant of molecular properties different from rhodopsin. Biochemistry 41, 1524515252.CrossRefGoogle Scholar
Kuwayama, S., Imai, H., Morizumi, T. & Shichida, Y. (2005). Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments. Biochemistry 44, 22082215.CrossRefGoogle ScholarPubMed
Lall, G.S., Revell, V.L., Momiji, H., Al Enezi, J., Altimus, C.M., Güler, A.D., Cameron, M.A., Allender, S., Hankins, M.W. & Lucas, R.J. (2010). Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron 66, 417428.CrossRefGoogle ScholarPubMed
Lamb, T.D., Collin, S.P. & Pugh, E.N. Jr (2007). Evolution of the vertebrate eye: Opsins, photoreceptors, retina and eye cup. Nature Reviews. Neuroscience 8, 960976.CrossRefGoogle ScholarPubMed
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007). ClustalW and ClustalX version 2. Bioinformatics 23, 29472948.CrossRefGoogle Scholar
Lem, J., Krasnoperova, N.V., Calvert, P.D., Kosaras, B., Cameron, D.A., Nicolò, M., Makino, C.L. & Sidman, R.L. (1999). Morphological, physiological, and biochemical changes in rhodopsin knockout mice. Proceedings of the National Academy of Sciences of the United States of America 96, 736741.CrossRefGoogle ScholarPubMed
Mano, H., Kojima, D. & Fukada, Y. (1999). Exo-rhodopsin: A novel rhodopsin expressed in the zebrafish pineal gland. Brain Research. Molecular Brain Research 73, 110118.CrossRefGoogle ScholarPubMed
Marin, E.P., Krishna, A.G., Zvyaga, T.A., Isele, J., Siebert, F. & Sakmar, T.P. (2000). The amino terminus of the fourth cytoplasmic loop of rhodopsin modulates rhodopsin-transducin interaction. The Journal of Biological Chemistry 275, 19301936.CrossRefGoogle ScholarPubMed
Matsumoto, Y., Fukamachi, S., Mitani, H. & Kawamura, S. (2006). Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). Gene 371, 268278.CrossRefGoogle ScholarPubMed
Melyan, Z., Tarttelin, E.E., Bellingham, J., Lucas, R.J. & Hankins, M.W. (2005). Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741745.CrossRefGoogle ScholarPubMed
Menon, S.T., Han, M. & Sakmar, T.P. (2001). Rhodopsin: Structural basis of molecular physiology. Physiological Reviews 81, 16591688.CrossRefGoogle ScholarPubMed
Molday, R.S. & MacKenzie, D. (1983). Monoclonal antibodies to rhodopsin: Characterization, cross-reactivity, and application as structural probes. Biochemistry 22, 653660.CrossRefGoogle ScholarPubMed
Morrow, J.M. & Chang, B.S.W. (2010). The p1D4-hrGFP II expression vector: A tool for expressing and purifying visual pigments and other G protein-coupled receptors. Plasmid 64, 162169.CrossRefGoogle ScholarPubMed
Moutsaki, P., Whitmore, D., Bellingham, J., Sakamoto, K., David-Gray, Z.K. & Foster, R.G. (2003). Teleost multiple tissue (tmt) opsin: A candidate photopigment regulating the peripheral clocks of zebrafish? Brain Research. Molecular Brain Research 112, 135145.CrossRefGoogle ScholarPubMed
Murakami, M. & Kouyama, T. (2008). Crystal structure of squid rhodopsin. Nature 453, 363367.CrossRefGoogle ScholarPubMed
Murray, A.R., Fliesler, S.J. & Al-Ubaidi, M.R. (2009). Rhodopsin: The functional significance of asn-linked glycosylation and other post-translational modification. Ophthalmic Genetics 30, 109120.CrossRefGoogle Scholar
Natochin, M., Gasimov, K.G., Moussalf, M. & Artemyev, N.O. (2003). Rhodopsin determinants for transducin activation: A gain-of-function approach. The Journal of Biological Chemistry 278, 3757437581.CrossRefGoogle ScholarPubMed
Neuhauss, S.C. (2003). Behavioral genetic approaches to visual system development and function in zebrafish. Journal of Neurobiology 54, 148160.CrossRefGoogle ScholarPubMed
Newman, L.A., Walker, M.T., Brown, R.L., Cronin, T.W. & Robinson, P.R. (2003). Melanopsin forms a functional short-wavelength photopigment. Biochemistry 42, 1273412738.CrossRefGoogle ScholarPubMed
Nickle, B. & Robinson, P.R. (2007). The opsins of the vertebrate retina: Insights from structural, biochemical, and evolutionary studies. Cellular & Molecular Life Sciences 64, 29172932.CrossRefGoogle ScholarPubMed
Nylander, J.A.A. (2004). MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.Google Scholar
Okada, T., Sugihara, M., Bondar, A.N., Elstner, M., Entel, P. & Buss, V. (2004). The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. Journal of Molecular Biology 342, 571583.CrossRefGoogle ScholarPubMed
Okawa, H. & Sampath, A.P. (2007). Optimization of single-photon response transmission at the rod-to-rod bipolar synapse. Physiology 22, 279286.CrossRefGoogle ScholarPubMed
Owens, G.L., Windsor, D.J., Mui, J. & Taylor, J.S. (2009). A fish eye out of water: Ten visual opsins in the four-eyed fish, Anableps anableps. PLoS One 4, e5970.CrossRefGoogle ScholarPubMed
Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. & Miyano, M. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739745.CrossRefGoogle ScholarPubMed
Panda, S., Nayak, S.K., Campo, B., Walker, J.R., Hogenesch, J.B. & Jegla, T. (2005). Illumination of the melanopsin signaling pathway. Science 307, 600604.CrossRefGoogle ScholarPubMed
Park, J.H., Scheerer, P., Hofmann, K.P., Choe, H.W. & Ernst, O.P. (2008). Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183187.CrossRefGoogle ScholarPubMed
Parry, J.W., Carleton, K.L., Spady, T., Carboo, A., Hunt, D.M. & Bowmaker, J.K. (2005). Mix and match color vision: Tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Current Biology 15, 17341739.CrossRefGoogle ScholarPubMed
Peirson, S.N., Halford, S. & Foster, R.G. (2009). The evolution of irradiance detection: Melanopsin and the non-visual opsins. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 28492865.CrossRefGoogle ScholarPubMed
Philp, A.R., Bellingham, J., Garcia-Fernandez, J. & Foster, R.G. (2000). A novel rod-like opsin isolated from the extra-retinal photoreceptors of teleost fish. FEBS Letters 468, 181188.CrossRefGoogle ScholarPubMed
Pierce, L.X., Noche, R.R., Ponomareva, O., Chang, C. & Liang, J.O. (2008). Novel functions for Period 3 and Exo-rhodopsin in rhythmic transcription and melatonin biosynthesis within the zebrafish pineal organ. Brain Research 1223, 1124.CrossRefGoogle ScholarPubMed
Pointer, M.A., Carvalho, L.S., Cowing, J.A., Bowmaker, J.K. & Hunt, D.M. (2007). The visual pigments of a deep-sea teleost, the pearl eye Scopelarchus analis. The Journal of Experimental Biology 210, 28292835.CrossRefGoogle ScholarPubMed
Rambaut, A. & Drummond, A.J. (2007). Tracer v1.4. Available from http://beast.bio.ed.ac.uk/TracerGoogle Scholar
Ramon, E., Mao, X. & Ridge, K.D. (2009). Studies on the stability of the human cone visual pigments. Photochemistry & Photobiology 85, 509516.CrossRefGoogle ScholarPubMed
Raymond, P.A., Barthel, L.K. & Curran, G.A. (1995). Developmental patterning of rod and cone photoreceptors in embryonic zebrafish. The Journal of Comparative Neurology 359, 537550.CrossRefGoogle ScholarPubMed
Ronquist, F. & Huelsenbeck, J.P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Rosenbaum, D.M., Rasmussen, S.G. & Kobilka, B.K. (2009). The structure and function of G-protein-coupled receptors. Nature 459, 356363.CrossRefGoogle ScholarPubMed
Sakmar, T.P., Franke, R.R. & Khorana, H.G. (1989). Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proceedings of the National Academy of Sciences of the United States of America 86, 83098313.CrossRefGoogle ScholarPubMed
Scheerer, P., Park, J.H., Hildebrand, P.W., Kim, Y.J., Krauss, N., Choe, H.W., Hofmann, K.P. & Ernst, O.P. (2008). Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497502.CrossRefGoogle ScholarPubMed
Shi, W., Osawa, S., Dickerson, C.D. & Weiss, E.R. (1995). Rhodopsin mutants discriminate sites important for the activation of rhodopsin kinase and Gt. The Journal of Biological Chemistry 270, 21122119.CrossRefGoogle ScholarPubMed
Shichida, Y. & Morizumi, T. (2007). Mechanism of G-protein activation by rhodopsin. Photochemistry & Photobiology 83, 7075.CrossRefGoogle ScholarPubMed
Takechi, M. & Kawamura, S. (2005). Temporal and spatial changes in the expression pattern of multiple red and green subtype opsin genes during zebrafish development. The Journal of Experimental Biology 208, 13371345.CrossRefGoogle ScholarPubMed
Tarttelin, E.E., Bellingham, J., Hankins, M.W., Foster, R.G. & Lucas, R.J. (2003). Neuropsin (Opn5): A novel opsin identified in mammalian neural tissue. FEBS Letters 554, 410416.CrossRefGoogle ScholarPubMed
Taylor, J.S., Braasch, I., Frickey, T., Meyer, A. & Van de Peer, Y. (2003). Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Research 13, 382390.CrossRefGoogle Scholar
Teller, D.C., Stenkamp, R.E. & Palczewski, K. (2003). Evolutionary analysis of rhodopsin and cone pigments: Connecting the three-dimensional structure with spectral tuning and signal transfer. FEBS Letters 555, 151159.CrossRefGoogle ScholarPubMed
Terakita, A., Tsukamoto, H., Koyanagi, M., Sugahara, M., Yamashita, T. & Shichida, Y. (2008). Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin. Journal of Neurochemistry 105, 883890.CrossRefGoogle ScholarPubMed
The Danio rerio sequencing project: Zv9. (in press). Cambridge, UK: Wellcome Trust Sanger Institute. http://www.sanger.ac.uk/Projects/D_rerio/Google Scholar
Torii, M., Kojima, D., Okano, T., Nakamura, A., Terakita, A., Shichida, Y., Wada, A. & Fukada, Y. (2007). Two isoforms of chicken melanopsins show blue light sensitivity. FEBS Letters 581, 53275331.CrossRefGoogle ScholarPubMed
Traxler, K.W. & Dewey, T.G. (1994). Effects of depalmitorylation on physicochemical properties of rhodopsin. Biochemistry 33, 17181723.CrossRefGoogle ScholarPubMed
Trezise, A.E. & Collin, S.P. (2005). Opsins: Evolution in waiting. Current Biology 15, R794R796.CrossRefGoogle ScholarPubMed
Wang, X., Li, J. & He, S. (2007). Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Molecular Phylogenetics & Evolution 42, 157170.CrossRefGoogle ScholarPubMed
Wang, Y., Wong, A.O.L. & Ge, W. (2003). Cloning, regulation of messenger ribonucleic acid expression, and function of a new isoform of pituitary adenylate cyclase-activating polypeptide in the zebrafish ovary. Endocrinology 144, 47994810.CrossRefGoogle ScholarPubMed
Weadick, C.J. & Chang, B.S.W. (2007). Long-wavelength sensitive visual pigments of the guppy (Poecilia reticulata): Six opsins expressed in a single individual. BMC Evolutionary Biology 7, S11.CrossRefGoogle Scholar
Weitz, C.J. & Nathans, J. (1992). Histidine residues regulate the transition of photoexcited rhodopsin to its active conformation, metarhodopsin II. Neuron 8, 465472.CrossRefGoogle ScholarPubMed
Yokoyama, R., Knox, B.E. & Yokoyama, S. (1995). Rhodopsin from the fish, Astyanax: Role of tyrosine 261 in the red shift. Investigative Ophthalmology & Visual Science 36, 939945.Google ScholarPubMed
Zardoya, R. & Doadrio, I. (1999). Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids. Journal of Molecular Evolution 49, 227237.CrossRefGoogle ScholarPubMed
Zhang, H., Futami, K., Horie, N., Okamura, A., Utoh, T., Mikawa, N., Yamada, Y., Tanaka, S. & Okamoto, N. (2000). Molecular cloning of fresh water and deep-sea rod opsin genes from Japanese eel Anguilla japonica and expressional analyses during sexual maturation. FEBS Letters 469, 3943.CrossRefGoogle ScholarPubMed
Zhang, H., Futami, K., Yamada, Y., Horie, N., Okamura, A., Utoh, T., Mikawa, N., Tanaka, S., Okamoto, N. & Oka, H.P. (2002). Isolation of freshwater and deep-sea type opsin genes from the common Japanese conger. Journal of Fish Biology 61, 313324.Google Scholar
Zhu, L., Imanishi, Y., Filipek, S., Alekseev, A., Jastrzebska, B., Sun, W., Saperstein, D.A. & Palczewski, K. (2006). Autosomal recessive retinitis pigmentosa and E150K mutation in the opsin gene. The Journal of Biological Chemistry 281, 2228922298.CrossRefGoogle ScholarPubMed
Zhukovsky, E.A., Robinson, P.R. & Oprian, D.D. (1991). Transducin activation by rhodopsin without a covalent bond to the 11- cis-retinal chromophore. Science 251, 558560.CrossRefGoogle Scholar
Supplementary material: File

Morrow Supplementary Material

Morrow Supplementary Table S1

Download Morrow Supplementary Material(File)
File 37.9 KB
Supplementary material: File

Morrow Supplementary Material

Morrow Supplementary Table S2

Download Morrow Supplementary Material(File)
File 68.6 KB