Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T19:18:21.627Z Has data issue: false hasContentIssue false

Neuronal structure of the lacertilian parietal eye, I: A retrograde label and electron-microscopic study of the ganglion cells in the photoreceptor layer

Published online by Cambridge University Press:  02 June 2009

Gustav A. Engbretson
Affiliation:
Department of Bioengineering and Institute for Sensory Research, Syracuse University, Syracuse
Kathy J. Anderson
Affiliation:
Department of Bioengineering and Institute for Sensory Research, Syracuse University, Syracuse

Abstract

The cellular connectivity of the lacertilian parietal eye is not well understood. Because the intercellular connections establish the foundation for information processing, we have investigated cellular connectivity of one cell type in this simple vertebrate retina. We also developed an in vitro preparation to study the anatomy of the parietal eye visual system. Horseradish peroxidase transport in the in vitro preparation revealed a class of displaced ganglion cells occupying positions among the photoreceptors, in a location where the presence of interneurons had been suggested. Three-dimensional reconstruction at the electron-microscopic level showed that the morphology and synaptic input of these displaced ganglion cells is different from that of the previously known ganglion cells. The displaced ganglion cells receive an average of about 13 ribbon synapses from photoreceptors. The ribbon input is equally distributed between the soma and dendritic arbor. Junctional membrane measurement and ethnolic phosphotungstic acid-staining provided evidence for the existence of non-ribbon synaptic contacts (synaptoid junctions). Displaced ganglion cells make about 20 synaptoid junctions, 65% of which are on the dendritic arbor. The morphology of the displaced ganglion cell is such that a significant measure of synaptic input to the dendritic arbor will be transmitted to the soma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bloom, F.E. & Aghajanian, G.K. (1968). Fine structural and cytochemical analysis of the staining of synaptic junctions with phosphotungstic acid. Journal of Ultrastructural Research 22, 361375.CrossRefGoogle ScholarPubMed
Bodian, D. (1972). Synaptic diversity and characterization by electron microscopy. In Structure and Function of Synapses, ed. Pappas, G.D. & Purpura, D.P., pp. 4565. New York: Raven Press.Google Scholar
Brecha, N., Karten, H.J. & Hunt, S.P. (1980). Projections of the nucleus of the basal optic root in the pigeon: an autoradiographic and horseradish peroxidase study. Journal of Comparative Neurology 189, 615670.CrossRefGoogle ScholarPubMed
Dodt, E. & Scherer, E. (1968). Photic responses from the parietal eye of the lizard Lacerta sicula campestris (de Betta). Vision Research 8, 6172.CrossRefGoogle Scholar
Dowling, J.E. & Boycott, B.B. (1966). Organization of the primate retina: electron microscopy. Proceedings of the Royal Society B (London) 166, 80111.Google ScholarPubMed
Eakin, R.M. (1964). Development of the third eye in the lizard Sceloporus occidentalis. Revue Suisse de Zoologie 71, 267285.CrossRefGoogle Scholar
Eakin, R.M. (1970). A third eye. American Scientist 58, 7379.Google Scholar
Eakin, R.M. (1973). The Third Eye. Berkeley: University of California Press.CrossRefGoogle Scholar
Eakin, R.M., Quay, W.B. & Westfall, J.A. (1961). Cytochemical and cytological studies of the parietal eye of the lizard Sceloporus occidentalis. Zeitschrift für Zellforschung 53, 449470.CrossRefGoogle Scholar
Engbretson, G.A. & Battelle, B.-A. (1985). Identification of putative neurotransmitters in the lizard parietal eye. Investigative Ophthalmology and Visual Science 26, 670678.Google ScholarPubMed
Engbretson, G.A., Brecha, N. & Reiner, A. (1982). Substance P-like immunoreactivity in the parietal eye visual system of the lizard Uta stansburiana. Cell and Tissue Research 227, 543554.CrossRefGoogle ScholarPubMed
Engnretson, G.A. & Lent, C.M. (1976). Parietal eye of the lizard: neuronal photoresponses and feedback from the pineal gland. Proceedings of the National Academy of Sciences of the U.S.A. 73, 654657.CrossRefGoogle Scholar
Engbertson, G.A. & Linser, P.J. (1988). Glial cells of the lizard parietal eye exhibit structural and immunohistochemical similarity to Müller cells of the lateral eye retina. Investigative Ophthalmology and Visual Science (Suppl.) 29, 205.Google Scholar
Engbertson, G.A., Reiner, A. & Brecha, N. (1981). Habenular asymmetry and the central connections of the parietal eye of the lizard. Journal of Comparative Neurology 198, 155165.CrossRefGoogle Scholar
Falen, S. & Packard, D. (1982). Computer-assisted stereoscopic reconstruction of biological tissues. Proceedings of the Third Annual Conference and Exposition of the National Computer Graphics Association 2, 9951003.Google Scholar
Fite, K.V., Brecha, N.Karten, H.J. & Hunt, S.P. (1981). Displaced ganglion cells and the accessory optic system of pigeon. Journal of Comparative Neurology 195, 279288.CrossRefGoogle ScholarPubMed
Gundy, G.C. & Wurst, G.Z. (1976). The occurrence of parietal eyes in recent lacertilians (Reptilia). Journal of Herpetology 10, 113121.CrossRefGoogle Scholar
Hamasaki, D.I. (1969). Spectral sensitivity of the parietal eye of the green iguana. Vision Research 9, 515523.CrossRefGoogle ScholarPubMed
Heaton, M.B., Alvarez, I.M. & Crandall, J.E. (1979). The displaced ganglion cell in the avian retina: developmental and comparative considerations. Anatomy and Embryology 155, 161178.CrossRefGoogle ScholarPubMed
Jenison, G. & Nolte, J. (1979). The fine structure of the parietal retinas of Anolis carolinensis and Iguana iguana. Cell and Tissue Research 199, 235247.CrossRefGoogle ScholarPubMed
Jenison, G.L., Eldred, W.D. & Nolte, J. (1979). A second class of neurons within the retinas of the parietal eyes of Anolis carolinensis and Iguana iguana. Brain Research 168, 615618.CrossRefGoogle ScholarPubMed
Jenison, G.L. & Nolte, J. (1980). An ultraviolet-sensitive mechanism in the reptilian parietal eye. Brain Research 194, 506510.CrossRefGoogle ScholarPubMed
Karten, H.J., Fite, K.V. & Brecha, N. (1977). Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (Columba livia). Proceedings of the National Academy of Science of the U.S.A. 74, 17531756.CrossRefGoogle Scholar
Kolb, H. (1977). The organization of the outer plexiform layer in the retina of the cat: electron-microscopic observations. Journal of Neurocytology 6, 131153.CrossRefGoogle ScholarPubMed
Korf, H.W. & Wagner, U. (1981). Nervous connections of the parietal eye in adult Lacerta s. sicula, Rafinesque, as demonstrated by anterograde and retrograde transport of horseradish peroxidase. Cell and Tissue Research 219, 567583.CrossRefGoogle ScholarPubMed
LaVail, J.H. & LaVail, M.M. (1972). Retrograde axonal transport in the central nervous system. Science 176, 14161417.CrossRefGoogle ScholarPubMed
Miller, W.H. & Wolbarsht, M.L. (1962). Neural activity in the parietal eye of a lizard. Science 135, 316317.CrossRefGoogle ScholarPubMed
Nowikoff, M. (1910). Untersuchungen über den Bau, die Entwicklung und die Bedeutung des Parietalauges von Saurien. Zeitschrift fur wissenschaftliche Zoologie 96, 118207.Google Scholar
Peters, A., Palay, S.L. & Webster, H.D.F. (1970). The Fine Structure of the Nervous System. New York: Harper and Row, 198 pp.Google Scholar
Petit, A. (1968). Ultrastructure de la rétine de l'oeil pariétal d'un lacertilien Anguis fragilis. Zeitschrift fur Zellforschung 92, 7093.CrossRefGoogle Scholar
Petit, A. & Vivien-Roels, B. (1977). Présence de contacts neurosensoriels et de synapses d'un type nouveau dans l'épiphyse du lézard des murailles (Lacerta muralis, Laurenti). Comptes Rendus de l'academie des Sciences, Paris, Serie D. 284, 19111913.Google ScholarPubMed
Raviola, E. (1976). Intercellular junctions in the outer plexiform layer of the retina. Investigative Ophthalmology 15, 881895.Google Scholar
Raviola, E. & Raviola, G. (1982). Structure of the synaptic membranes in the inner plexiform layer of the retina: a freeze-fracture study in monkeys and rabbits. Journal of Comparative Neurology 209, 233248.CrossRefGoogle ScholarPubMed
Reiner, A., Brecha, N. & Karten, H.J. (1979). A specific projection of retinal displaced ganglion cells to the nucleus of the basal optic root in the chicken. Neuroscience 4, 16791688.CrossRefGoogle Scholar
Sakai, H.M., Naka, K.-I & Dowling, J.E. (1986). Ganglion cell dendrites are presynaptic in the catfish retina. Nature 319, 495497.CrossRefGoogle ScholarPubMed
Shepherd, G.M. (1979). The Synaptic Organization of the Brain. New York: Oxford University Press. 436 pp.Google Scholar
Spencer, W.B. (1887). On the presence and structure of the parietal eye in Lacertilia. Quarterly Journal of Microscopical Science 27, 165238.Google Scholar
Steyn, W. (1960). Observations on the ultrastructure of the parietal eye. Journal of the Royal Microscopical Society 79, 4758.CrossRefGoogle Scholar