Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T07:23:26.922Z Has data issue: false hasContentIssue false

A neural network model of kinetic depth

Published online by Cambridge University Press:  02 June 2009

Mark Nawrot
Affiliation:
Department of Psychology, Vanderbilt University, Nashville
Randolph Blake
Affiliation:
Department of Psychology, Vanderbilt University, Nashville

Abstract

We propose a network model that accounts for the kinetic depth in structure from motion phenomena. Using plausible neural mechanisms, the model accounts for (1) fluctuations in perception when viewing a simple kinetic depth stimulus, (2) disambiguation of this stimulus with stereoscopic information, and (3) subsequent bias of the percept of this stimulus following stereoscopic adaptation. The model comprises two levels: a layer of monocular directionally selective motion detectors that provide input to a second layer of disparity- selective and direction-selective binocular mechanisms. The network of facilitatory and inhibitory connections between binocular mechanisms gives rise to fluctuations in network activity that mimic the fluctuations in perception of kinetic depth in the absence of disparity information. The results of a psychophysical experiment are consistent with the nature of the proposed interactions.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braunstein, M.L. (1962). The perception of depth through motion. Psychological Bulletin 59, 422433.CrossRefGoogle ScholarPubMed
Braunstein, M.L. (1986). Dynamic stereo displays for research on the recovery of three-dimensional structure. Behavior Research Methods, Instruments, and Computers 18, 522530.Google Scholar
Braunstein, M.L. & Andersen, G.J. (1984 a). A counterexample to the rigidity assumption in the visual perception of structure from motion. Perception 12, 213217.CrossRefGoogle Scholar
Braunstein, M.L. & Andersen, G.J. (1984 b). Shape and depth perception from parallel projections of three-dimensional motion. Journal of Experimental Psychology: Human Perception and Performance 10, 749760.Google ScholarPubMed
Braunstein, M.L., Hoffman, D.D., Shapiro, L.R., Anderson, G.J. & Bennett, B.M. (1987). Minimum points and views for the recovery of three-dimensional structure. Journal of Experimental Psychology: Human Perception and Performance 13, 335343.Google ScholarPubMed
DeYoe, E.A. & Van, Essen D.C. (1988). Concurrent processing Streams in monkey visual cortex. Trends in Neuroscience 11, 219226.CrossRefGoogle ScholarPubMed
Dosher, B.A., Sperling, G. & Wurst, S.A. (1986). Tradeoffs between stereopsis and proximity luminance covariance as determinants of perceived 3D structure. Vision Research 26, 973990.CrossRefGoogle ScholarPubMed
Hildreth, E.C., Grzywacz, N.M., Adelson, E.H. & Inada, V.K. (1990). The perceptual buildup of three-dimensional structure from motion. Perception and Psychophysics 48, 1936.CrossRefGoogle ScholarPubMed
Hoffman, D.D. & Bennett, B.M. (1985). The computation of structure from fixed-axis motion: nonrigid structures. Biological Cybernetics 51, 293300.Google Scholar
Hoffman, D.D. & Bennett, B.M.(1986). The computation of structure from fixed-axis motion: rigid structures. Biological Cybernetics 54, 7183.CrossRefGoogle Scholar
Livingstone, M.S. & Hubel, D.H. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience 7, 34163468.CrossRefGoogle ScholarPubMed
Mark, D. & Paggio, T. (1976). Cooperative computation of stereo disparity. Science 194, 283287.Google Scholar
Maunsell, J.H.R. & Van, Essen D.C. (1983). Functional properties of neurons in the middle temporal visual area of the macaque monkey, II: Binocular interactions and sensitivity to binocular disparity. Journal of Neuroscience 49, 11481167.Google ScholarPubMed
Miles, W.R. (1931). Movement interpretations of the silhouette of a revolving fan. American Journal of Psychology 43, 392405.CrossRefGoogle Scholar
Nawrot, M. & Blake, R. (1989). Neural integration of information specifying structure from stereopsis and motion. Science 244, 716718.CrossRefGoogle ScholarPubMed
Nawrot, M. & Sekuler, R. (1990). Assimilation and contrast in motion perception: explorations in cooperativity. Vision Research 30, 14341451.CrossRefGoogle ScholarPubMed
Nawrot, M. & Blake, R. (1991). The interplay between stereopsis and structures from motion. Perception and Psychophysics (in press).CrossRefGoogle Scholar
Ono, H. & Steinbach, M.J. (1990). Monocular stereopsis with and without head movement. Perception and Psychophysics 48, 179187.CrossRefGoogle ScholarPubMed
Peterson, S.E., Baker, J.F. & Allman, J.M. (1985). Direction-specific adaptation in area MT of the owl monkey. Brain Research 346, 146150.CrossRefGoogle Scholar
Petersik, J.T. (1979). Perception of simultaneous simulations of two rotating spheres in the same visual locale. Bulletin of the Psychonomic Society 14, 131134.CrossRefGoogle Scholar
Petersik, J.T., Shepard, A. & Malsch, R. (1984). A three-dimensional aftereffect produced by prolonged adaptation to a rotation simulation. Perception 13, 489497.CrossRefGoogle ScholarPubMed
Poggio, G.F. & Talbot, W.H. (1981). Mechanisms of Static and dynamic stereopsis in foveal cortex of the rhesus monkey. Journal of Physiology 315, 469492.CrossRefGoogle ScholarPubMed
Poggio, O.F., Gonzalez, F. & Krause, F. (1988). Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity. Journal of Neuroscience 8, 45314550.CrossRefGoogle ScholarPubMed
Richards, W. (1985). Structure from stereo and motion. Journal of the Optical Society of America A 2, 343349.CrossRefGoogle ScholarPubMed
Richards, W. & Lieberman, H.R. (1985). Correlation between stereo ability and the recovery of structure from motion. American Journal of Optometry and Physiological Optics 62, 111118.CrossRefGoogle ScholarPubMed
Rogers, B.J. & Graham, M.E. (1982). Similarities between motion parallax and stereopsis in human depth perception. Vision Research 22, 261270.CrossRefGoogle ScholarPubMed
Rogers, B.J. & Graham, M.E. (1983). Anisotropies in the perception of three-dimensional surfaces. Science 221, 14091411.CrossRefGoogle ScholarPubMed
Rogers, B.J. & Graham, M.E. (1984). Aftereffects from motion parallax and stereoscopic depth: similarities and interactions. In Sensory Experience, Adaptation, and Perception: Festschrift for Ivo Kohler. ed. Spillman, L. & Wooten, B.R., pp. 603619. Hillsdale, New Jersey: Lawrence Erlbaum & Associates.Google Scholar
Snedecor, G.W. & Cochran, W.G. (1967). Statistical Methods. Ames, Iowa: The Iowa State University Press.Google Scholar
Sperling, G., Landy, M.S., Dosher, B.A. & Perkins, M.E. (1989). Kinetic depth effects and identification of shape. Journal of Experimental Psychology: Human Perception and Performance 15, 826840.Google ScholarPubMed
Todd, J.T. (1984). The perception of three-dimensional structure from rigid and nonrigid motion. Perception and Psychophysics 32, 97103.CrossRefGoogle Scholar
Todd, J.T. (1985). Perception of structure from motion: Is projective correspondence of moving elements a necessary condition? Journal of Experimental Psychology: Human Perception and Performance 11, 689710.Google ScholarPubMed
Treue, S., Husain, M. & Andersen, R.A. (1991). Human perception of structure from motion. Vision Research 31, 5976.CrossRefGoogle ScholarPubMed
Ullman, S. (1979). The interpretation of structure from motion. Proceedings of the Royal Society B (London) 203, 405426.Google ScholarPubMed
Ullman, S. (1984). Maximizing rigidity: the incremental recovery of 3-D structure from rigid and nonrigid motion. Perception 13, 255274.CrossRefGoogle ScholarPubMed
Vaina, L.M. (1989). Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans. Biological Cybernetics 61, 347359.CrossRefGoogle ScholarPubMed
Van, Santen J.P.H. & Sperling, G. (1984). Temporal covariance model of human motion perception. Journal of the Optical Society of America A 1,451473.Google Scholar
Wallach, H. & O'Connell, D.N. (1953). The kinetic depth effect. Journal of Experimental Psychology 45, 205217.CrossRefGoogle ScholarPubMed
Watson, A.B. & Ahumada, A.J. Jr., (1985). Model of human visual motion sensing. Journal of the Optical Society of America A 2, 322341.CrossRefGoogle ScholarPubMed
Williams, D. & Phillips, G. (1986). Structure from motion in a stochastic display. Journal of the Optical Society of America A 3, 12.Google Scholar
Williams, D. & Phillips, G. (1987). Rigid 3-D percept from stochastic 1-D motion. Journal of the Optical Society of America A 4, 35.Google Scholar
Williams, D. & Phillips, G. & Sekuler, R. (1986). Hysteresis in the perception of motion direction as evidence for neural cooperativity. Nature 324, 253255.CrossRefGoogle ScholarPubMed
Woodworth, R.S. & Schlosberg, H. (1954). Experimental Psychology, (2nd edition). New York: Holt & Rinehart.Google Scholar