Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T08:16:49.007Z Has data issue: false hasContentIssue false

NADPH-diaphorase reactivity in the ventral and dorsal lateral geniculate nuclei of rats

Published online by Cambridge University Press:  02 June 2009

John Mitrofanis
Affiliation:
Department of Human Anatomy, South Parks Road, University of Oxford, OX1 3QX, United Kingdom

Abstract

The present study describes the patterns of NADPH-diaphorase reactivity in the ventral and dorsal lateral geniculate nuclei of rats. In the ventral lateral geniculate nucleus, two distinct populations of NADPH-diaphorase reactive cells are apparent. One population is deeply stained, generally larger in somal size and located in the more superficial or dorsolateral regions of the nucleus. The second population of reactive cells in the nucleus is lightly labeled, small in somal size, and found in deeper or more ventromedial regions of the nucleus. Double labeling with an antibody to GAB A revealed that neither cell class is GABAergic.

In the dorsal lateral geniculate nucleus, reactivity is apparent in lightly labeled small cells only, most of which are GABA immunoreactive also. The NADPH-diaphorase reactive cells, however, form only a small proportion of the total population of GABAergic cells in the nucleus. The striking feature of the NADPH-diaphorase reactive cells in the dorsal lateral geniculate nucleus is their spatial distribution. Most cells are located in the more superficial or dorsolateral areas: very few are apparent in deeper or more ventromedial areas of the nucleus. This distribution closely parallels the location of the outer “shell” region of the nucleus (see Reese, 1988), which receives most of its afferents from the smaller class II and III ganglion cells of the retina and from the superior colliculus.

Type
Short Communications
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brauer, K. & Schober, W. (1982). Identification of geniculotectal relay neurones in the rat's ventral lateral geniculate nucleus. Experimental Brain Research 45, 8488.Google ScholarPubMed
Card, J.P. & Moore, R.Y. (1982). Ventral lateral geniculate nucleus efferents to the rat suprachiasmatic nucleus exhibit avian pancreatic polypeptide-like immunoreactivity. Journal of Comparative Neurology 206, 390398.CrossRefGoogle Scholar
Cobcroft, M.D., Vaccaro, T.M. & Mitrofanis, J. (1989). Distinct patterns of distribution among NADPH-diaphorase neurones of the guinea pig retina. Neuroscience Letters 103, 17.CrossRefGoogle ScholarPubMed
Goodman, D.C. & Horel, J.A. (1966). Sprouting of optic tract projections in the brain stem of the rat. Journal of Comparative Neurology 127, 7188.CrossRefGoogle ScholarPubMed
Grossman, A., Leiberman, A.R. & Webster, K.E. (1973). A Golgi study of the rat dorsal lateral geniculate nucleus. Journal of Comparative Neurology 150, 441466.CrossRefGoogle ScholarPubMed
Hayhow, W.R., Sefton, A. & Webb, C. (1962). Primary optic centres of the rat in relation to the terminal distribution of the crossed and uncrossed optic nerve fibres. Journal of Comparative Neurology 118, 295322.CrossRefGoogle Scholar
Hope, B.T., Michael, G.J., Knigge, K.M. & Vincent, S.R. (1991). Neuronal NADP H diaphorase is a nitric oxide synthase. Proceedings of the National Academy of Sciences of the U.S.A. 88, 28112814.CrossRefGoogle Scholar
Jacobs, W., Farivar, N. & Butcher, L.L. (1985). Alzheimer dementia and reduced nicotinamide adenine (NADH)-diaphorase activity in senile plaques and the basal forebrain. Neuroscience Letters 53, 3944.CrossRefGoogle ScholarPubMed
Kowall, N.W., Ferante, R.J., Bear, M.F., Richardson, E.P., Sofroniew, M.V., Cuello, A.C. & Martin, J.B. (1987). Neuropeptide Y, somatostatin and reduced nicotinamide adenine dinucleotide phosphate diaphorase in the human striatum: A combined immunocytochemical and enzyme histochemical study. Neuroscience 20, 817828.CrossRefGoogle ScholarPubMed
Manth, P.W. & Kemp, A. (1983). The distribution of putative neurotransmitters in the lateral geniculate nucleus of the rat. Brain Research 288, 344348.CrossRefGoogle Scholar
Martin, P.R. (1986). The projection of different retinal ganglion cell classes to the dorsal lateral geniculate nucleus in the hooded rat. Experimental Brain Research 62, 7788.CrossRefGoogle Scholar
Mitrofanis, J. (1989). The development of NADPH-diaphorase cells in the rat's retina. Neuroscience Letters 102, 165172.CrossRefGoogle ScholarPubMed
Mitrofanis, J. (1991). Calbindin immunoreactivity in a subset of cat thalamic reticular neurones. Journal of Neurocytology (accepted).Google Scholar
Mizukawa, K., Vincent, S.R., Mcgeer, P.L. & Mcgeer, E.G. (1989). Distribution of reduced nicotinamide adenine dinucleotide phosphate diaphorase positive cells and fibres in the cat central nervous system. Journal of Comparative Neurology 279, 281311.CrossRefGoogle ScholarPubMed
Mounty, E.J., Parnavelas, J.G. & Lumberman, A.R. (1977). The neurones and their postnatal development in the ventral lateral geniculate nucleus of the rat. Anatomy and Embryology 151, 3551.CrossRefGoogle ScholarPubMed
MÜLler, F., WÄSsle, H. & Brecha, N. (1988). NADPH-diaphorase positive amacrine cells show GABA-like immunoreactivity in cat retina. European Journal of Neuroscience (Suppl.) 1, 153.Google Scholar
Ohara, P.T., Leiberman, A.R., Hunt, S.P. & Wu, J. (1983). Neural elements containing glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the rat. Immunohistochemical studies by light and electron microscopy. Neuroscience 8, 189211.CrossRefGoogle ScholarPubMed
Provis, J.M. & Mitrofanis, J. (1990). NADPH-diaphorase neurones of human retinae have a uniform topographical distribution. Visual Neuroscience 6, 619623.CrossRefGoogle Scholar
Reese, B.E. (1988). “Hidden lamination” in the dorsal lateral geniculate nucleus: The functional organisation of this thalamic region in the rat. Brain Research Reviews 13, 119137.CrossRefGoogle Scholar
Sagar, S.M. (1986). NADPH-diaphorase histochemistry in the rabbit retina. Brain Research 373, 153158.CrossRefGoogle ScholarPubMed
Sagar, S.M. & Ferriero, D.M. (1987). NADPH-diaphorase activity in the posterior pituitary: Relation to neuronal function. Brain Research 400, 348352.CrossRefGoogle ScholarPubMed
Sandell, J.H. (1985). NADPH-diaphorase cells in the mammalian inner retina. Journal of Comparative Neurology 238, 466472.CrossRefGoogle ScholarPubMed
Sandell, J.H. (1986). NADPH-diaphorase cells in the macaque striate cortex. Journal of Comparative Neurology 251, 388397.CrossRefGoogle ScholarPubMed
Sandell, J.H., Graybiel, A.M. & Chesselet, M.F. (1986). A new enzyme marker for striatal compartmentalization: NADPH-diaphorase activity in the caudate and putamen of the cat. Journal of Comparative Neurology 243, 326334.CrossRefGoogle ScholarPubMed
Scherer-Singler, U., Vincent, S.R., Kimura, H. & Mcgeer, E.G. (1983). Demonstration of a unique population of neurones with NADPH-diaphorase histochemistry. Journal of Neuroscience Methods 9, 229234.CrossRefGoogle ScholarPubMed
Scott, J.W., Mcdonald, J.K. & Pemberton, J.L. (1987). Short axon cells of the rat olfactory bulb display NADPH-diaphorase activity, neuropeptide Y-like immunoreactivity, and somatostatin-like immunoreactivity. Journal of Comparative Neurology 260, 378391.CrossRefGoogle ScholarPubMed
Swanson, L.W., Cowan, W.M. & Jones, E.G. (1974). An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and the cat. Journal of Comparative Neurology 156, 143164.CrossRefGoogle ScholarPubMed
Taylor, A.M., Jeffery, G. & Lieberman, A.R. (1986). Subcortical afferent and efferent connections of the superior colliculus in the rat and comparisons between albino and pigmented strains. Experimental Brain Research 62, 131142.CrossRefGoogle ScholarPubMed
Thomas, E. & Pearse, A.G.E. (1961). The fine localisation of dehydrogenases in the nervous system. Histochemistry 2, 266282.CrossRefGoogle ScholarPubMed
Vaney, D.I. & Young, H.M. (1988). GABA-like immunoreactivity in NADPH-diaphorase amacrine cells of the rabbit retina. Brain Research 474, 380385.CrossRefGoogle ScholarPubMed
Vincent, S.R. & Johansson, O. (1983). Striatal neurones containing both somatostatin and avian pancreatic polypeptide (APP)-like immunoreactivities and NADPH-diaphorase activity. Journal of Comparative Neurology 217, 264270.CrossRefGoogle ScholarPubMed
Vincent, S.R., Johansson, O., Hokfelt, T., Skirboll, L., Elde, R.P., Terenius, L., Kimmel, J. & Goldstein, M. (1983a). NADPH-diaphorase: A selective histochemical marker of striatal neurones containing both somatostatin and avian pancreatic polypeptide (APP)-like immunoreactivities. Journal of Comparative Neurology 217, 252263.CrossRefGoogle ScholarPubMed
Vincent, S.R., Satoh, K., Armstrong, D.M. & Fibiger, H.C. (1983b). NADPH-diaphorase: A selective histochemical marker for the cholinergic neurones of the pontine reticular formation. Neuroscience Letters 43, 3136.CrossRefGoogle ScholarPubMed
Vincent, S.R., Satoh, K., Armstrong, D.M., Panula, P., Vale, W. & Fibiger, H.C. (1986). Neuropeptides and NADPH-diaphorase activity in the ascending cholinergic reticular system of the rat. Neuroscience 17, 167182.CrossRefGoogle ScholarPubMed
WÄSsle, H., Hoon Chun, M. & Muller, F. (1987). Amacrine cells in the ganglion cell layer of the cat retina. Journal of Comparative Neurology 265, 391408.CrossRefGoogle ScholarPubMed
Young, H.M. & Vaney, D.I. (1989). GABA-like immunoreactivity in NADPH-diaphorase amacrine cells of rabbit and rat retinae. Neuroscience Letters (Suppl.) 27, 114.Google Scholar