Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T14:03:56.047Z Has data issue: false hasContentIssue false

A model for motion coherence and transparency

Published online by Cambridge University Press:  02 June 2009

Hugh R. Wilson
Affiliation:
Visual Sciences Center, University of Chicago, Chicago
Jeounghoon Kim
Affiliation:
Visual Sciences Center, University of Chicago, Chicago

Abstract

A recent model for two-dimensional motion processing in MT has demonstrated that perceived direction can be accurately predicted by combining Fourier and non-Fourier component motion signals using a vector sum computation. The vector sum direction is computed by a neural network that weights Fourier and non-Fourier components by the cosine of the component direction relative to that of each pattern unit, after which competitive inhibition extracts the signals of the most active units. It is shown here that a minor modification of the connectivity in this network suffices to predict transitions from motion coherence to transparency under a wide range of circumstances. It is only necessary that the cosine weighting function and competitive inhibition be limited to directions within ± 120 deg of each pattern unit's preferred direction. This network responds by signaling one pattern direction for coherent motion but two distinct directions for transparent motion. Based on this, neural networks with properties of MT and MST neurons can automatically signal motion coherence or transparency. In addition, the model accurately predicts motion repulsion under transparency conditions.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, E.H. & Movshon, J.A. (1982). Phenomenal coherence of moving visual patterns. Nature 300, 523525.CrossRefGoogle ScholarPubMed
Adelson, E.H. & Bergen, J.R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A 2, 284299.CrossRefGoogle ScholarPubMed
Albright, T.D., Desimone, R. & Gross, C.G. (1984). Columnar organization of directionally selective cells in visual area MT of the macaque. Journal of Neurophysiology 51, 1631.CrossRefGoogle ScholarPubMed
Albright, T.D. (1992). Form-cue invariant motion processing in primate visual cortex. Science 255, 11411143.CrossRefGoogle ScholarPubMed
Andersen, R.A., Snyder, L.H., Li, C.-S. & Stricanne, B. (1993). Coordinate transformations in the representation of spatial information. Current Opinion in Neurobiology 3, 171176.CrossRefGoogle ScholarPubMed
Anderson, S. J. & Burr, D.C. (1985). Spatial and temporal selectivity of the human motion detection system. Vision Research 25, 11471154.CrossRefGoogle ScholarPubMed
Badcock, D.R. & Derrington, A.M. (1985). Detecting the displacement of periodic patterns. Vision Research 25, 12531258.CrossRefGoogle ScholarPubMed
Badcock, D.R. & Derrington, A.M. (1989). Detecting the displacements of spatial beats: no role for distortion products. Vision Research 29, 731739.CrossRefGoogle ScholarPubMed
Beck, J. (1985). Perception of transparency in man and machine. In Human and Machine Vision, II, ed. Rosenfeld, A., pp. 112. New York: Academic Press.Google Scholar
Bergen, J.R. & Landy, M.S. (1991). Computational modeling of visual texture segregation. In Computational Models of Visual Processing, ed. Landy, M. & Movshon, J.A., pp. 253271. Cambridge, Massachusetts: MIT Press.Google Scholar
Born, R.T. & Tootell, R.B. (1992). Segregation of global and local motion processing in primate middle temporal visual area. Nature 357, 497499.CrossRefGoogle ScholarPubMed
Burke, D. & Wenderoth, P. (1993). The effect of interactions between one-dimensional component gratings on two-dimensional motion perception. Vision Research 33, 343350.CrossRefGoogle ScholarPubMed
Cavanagh, P. & Mather, G. (1990). Motion: The long and short of it. Spatial Vision 4, 103129.Google Scholar
Chubb, C. & Sperling, G. (1988). Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception. Journal of the Optical Society of America A 5, 19862007.CrossRefGoogle ScholarPubMed
Chubb, C. & Sperling, G. (1989). Two motion perception mechanisms revealed through distance-driven reversal of apparent motion. Proceedings of the National Academy of Sciences of the U.S.A. 86, 29852989.CrossRefGoogle ScholarPubMed
Derrington, A. & Suero, M. (1991). Motion of complex patterns is computed from the perceived motions of their components. Vision Research 31, 139149.CrossRefGoogle ScholarPubMed
Derrington, A.M., Badcock, D.R. & Holroyd, S.A. (1992). Analysis of the motion of 2-dimensional patterns: Evidence for a second-order process. Vision Research 32, 699707.CrossRefGoogle ScholarPubMed
Derrington, A.M. & Badcock, D.R. (1992). Two-stage analysis of the motion of 2-dimensional patterns, what is the first stage? Vision Research 32, 691698.CrossRefGoogle ScholarPubMed
Derrington, A.M., Badcock, D.R. & Henning, G.B. (1993). Discriminating the direction of second-order motion at short stimulus durations. Vision Research 33, 17851794.CrossRefGoogle ScholarPubMed
Farid, H. & Simoncelli, E.P. (1994). The perception of transparency in moving square-wave plaids. Investigative Ophthalmology and Visual Science (ARVO) 35, 1271.Google Scholar
Ferrera, V.P. & Wilson, H.R. (1990). Perceived direction of moving two-dimensional patterns. Vision Research 30, 273287.CrossRefGoogle ScholarPubMed
Freedland, R.L. & Banton, T. (1993). Type II near-isoluminant plaids: Shifts in perceived direction at brief durations. Investigative Ophthalmology and Visual Science (ARVO Abstract) 34, 1031.Google Scholar
Georgopoulos, A.P., Taira, M. & Lukashdj, A. (1993). Cognitive neurophysiology of the motor cortex. Science 260, 4752.CrossRefGoogle ScholarPubMed
Graham, N. (1991). Complex channels, early local nonlinearities, and normalization in texture segregation. In Computational Models of Visual Processing, ed. Landy, M. & Movshon, J.A., pp. 273290. Cambridge, Massachusetts: MIT Press.Google Scholar
Grosof, D.H., Shapley, R.M. & Hawken, M.J. (1993). Macaque VI neurons can signal ‘illusory’ contours. Nature 365, 550552.CrossRefGoogle Scholar
Grossberg, S. (1973). Contour enhancement, short-term memory and Constances in reverberating neural networks. Studies in Applied Mathematics 52, 217257.CrossRefGoogle Scholar
Heeger, D.J. (1991). Nonlinear model of neural responses in cat visual cortex. In Computational Models of Visual Processing, ed. Landy, M. & Movshon, J.A., pp. 119133. Cambridge, Massachusetts: MIT Press.Google Scholar
Heeger, D.J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience 9, 181197.CrossRefGoogle ScholarPubMed
Henning, G.B., Hertz, B.G. & Broadbent, D.E. (1975). Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency. Vision Research 15, 887897.CrossRefGoogle ScholarPubMed
Jasinschi, R., Rosenfeld, A. & Sumi, K. (1992). Perceptual motion transparency: The role of geometrical information. Journal of the Optical Society of America A 9, 18651879.CrossRefGoogle Scholar
Kim, J. & Wilson, H.R. (1993). Dependence of plaid motion coherence on component grating directions. Vision Research 33, 24792489.CrossRefGoogle ScholarPubMed
Kim, J. & Wilson, H.R. (1994 a). Direction repulsion between components in motion transparency. Vision Research (in press).Google Scholar
Kim, J. & Wilson, H.R. (1994 b). Perceived direction shift caused by surrounding motion in the periphery. Investigative Ophthalmology and Visual Science (Suppl.) 35, p. 1390.Google Scholar
Ledgeway, T. & Smith, A.T. (1993). Separate mechanisms for the detection of first and second-order motion in human vision. Investigative Ophthalmology and Visual Science (ARVO Abstract) 34, 1363.Google Scholar
Legge, G.E. & Foley, J.M. (1980). Contrast masking in human vision. Journal of the Optical Society of America 70, 14581470.CrossRefGoogle ScholarPubMed
Malik, J. & Perona, P. (1990). Preattentive texture discrimination with early vision mechanisms. Journal of the Optical Society of America A 7, 923932.CrossRefGoogle ScholarPubMed
Marshak, W. & Sekuler, R. (1979). Mutual repulsion between moving visual targets. Science 205, 13991401.CrossRefGoogle ScholarPubMed
Mather, G. & Moulden, B. (1980). A simultaneous shift in apparent direction: Further evidence for a “distribution shift” model of direction coding. Quarterly Journal of Experimental Psychology 32, 325333.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & VanEssen, D.C. (1983). Functional properties of neurons in the middle temporal visual area of the macaque monkey, II: Binocular interactions and sensitivity to binocular disparity. Journal of Neuroscience 49, 11481167.Google ScholarPubMed
Mingolla, E., Todd, J.T. & Norman, J.F. (1992). The perception of globally coherent motion. Vision Research 32, 10151031.CrossRefGoogle ScholarPubMed
Movshon, J.A., Adelson, E.H., Gizzi, M.S. & Newsome, W.T. (1986). The analysis of moving visual patterns. In Pattern Recognition Mechanisms, ed. Chagas, C., Gattass, R. & Gross, C., pp. 117151. New York: Springer-Verlag.Google Scholar
Nakayama, K. & Silverman, G.H. (1988). The aperture problem –1. Perception of nonrigidity and motion direction in translating sinusoidal lines. Vision Research 28, 739746.CrossRefGoogle ScholarPubMed
Nawrot, M. & Blake, R. (1991). A neural network model of kinetic depth. Visual Neuroscience 6, 219227.CrossRefGoogle ScholarPubMed
Nawrot, M. & Sekuler, R. (1990). Assimilation and contrast in motion perception: Explorations in cooperativity. Vision Research 30, 14391451.CrossRefGoogle ScholarPubMed
Pantle, A. (1992). Immobility of some second-order stimuli in human peripheral vision. Journal of the Optical Society of America A 9, 863867.CrossRefGoogle ScholarPubMed
Perrone, J.A. (1990). Simple technique for optical flow estimation. Journal of the Optical Society of America A 7, 264278.CrossRefGoogle Scholar
Phillips, G.C. & Wilson, H.R. (1984). Orientation bandwidths of spatial mechanisms measured by masking. Journal of the Optical Society of America A 1, 226232.CrossRefGoogle ScholarPubMed
Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In Sensory Communication, ed. Rosenblith, W.A., pp. 303317. New York: Wiley.Google Scholar
Rodman, H.R. & Albright, T.D. (1987). Coding of visual stimulus velocity in area MT of the macaque. Vision Research 27, 20352048.CrossRefGoogle ScholarPubMed
Salzman, C.D. & Newsome, W.T. (1994). Neural mechanisms for forming a perceptual decision. Science 264, 231237.CrossRefGoogle ScholarPubMed
Shapley, R.M. (1994). In Higher-Order Processing in the Visual System, ed. Goode, J., p. 242. London: CIBA Foundation.Google Scholar
Smith, A.T. (1987). Velocity perception and discrimination: Relation to temporal mechanisms. Vision Research 27, 14911500.CrossRefGoogle ScholarPubMed
Snowden, R.J. (1989). Motions in orthogonal directions are mutually suppressive. Journal of the Optical Society of America A 6, 10961101.CrossRefGoogle Scholar
Snowden, R.J., Treue, S., Erickson, R.G. & Andersen, R.A. (1991). The response of area MT and V1 neurons to transparent motion. Journal of the Neuroscience 11, 27682785.CrossRefGoogle ScholarPubMed
Stone, L.S., Watson, A.B. & Mulligan, J.B. (1990). Effect of contrast on the perceived direction of a moving plaid. Vision Research 30, 10491067.CrossRefGoogle ScholarPubMed
Stoner, G.R., Albright, T.D. & Ramachandran, V.S. (1990). Transparency and coherence in human motion perception. Nature 344, 153155.CrossRefGoogle ScholarPubMed
Stoner, G.R. & Albright, T.D. (1992 a). Neural correlates of perceptual motion coherence. Nature 358, 412414.CrossRefGoogle ScholarPubMed
Stoner, G.R. & Albright, T.D. (1992 b). Motion coherency rules are form-cue invariant. Vision Research 32, 465475.CrossRefGoogle ScholarPubMed
Tanaka, K., Hikosaka, K., Saito, H., Yukie, M., Fukaka, Y. & Iwai, E. (1986). Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. Journal of Neuroscience 6, 134144.CrossRefGoogle ScholarPubMed
Thompson, P. (1982). Perceived rate of movement depends on contrast. Vision Research 22, 377380.CrossRefGoogle ScholarPubMed
Thompson, P. (1983). Discrimination of moving gratings at and above detection threshold. Vision Research 23, 15331538.CrossRefGoogle ScholarPubMed
Thompson, P. (1984). The coding of velocity of movement in the human visual system. Vision Research 24, 4145.CrossRefGoogle ScholarPubMed
Turano, K. & Pantle, A. (1989). On the mechanism that encodes the movement of contrast variations: Velocity discrimination. Vision Research 29, 207221.CrossRefGoogle ScholarPubMed
Turano, K. (1991). Evidence for a common motion mechanism of luminance and contrast modulated patterns: Selective adaptation. Perception 20, 455466.CrossRefGoogle ScholarPubMed
VanEssen, D. C. (1985). Functional organization of primate visual cortex. In Cerebral Cortex, 3, ed. Peters, A. & Jones, E. G., pp. 259329. New York: Plenum.Google Scholar
VanEssen, D. C., Anderson, C.H. & Felleman, D.J. (1992). Information processing in the primate visual system: An integrated systems perspective. Science 255, 419423.CrossRefGoogle Scholar
von der Heydt, R., Peterhans, E. & Baumgartner, G. (1984). Illusory contours and cortical neuron responses. Science 224, 12601262.CrossRefGoogle ScholarPubMed
von der Heydt, R. & Peterhans, E. (1989). Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity. Journal of Neuroscience 9, 17311748.CrossRefGoogle ScholarPubMed
Welch, L. (1989). The perception of moving plaids reveals two motion processing stages. Nature 337, 734736.CrossRefGoogle ScholarPubMed
Welch, L. & Bowne, S.F. (1990). Coherence determines speed discrimination. Perception 19, 425435.CrossRefGoogle ScholarPubMed
Williams, D., Phillips, G. & Sekuler, R. (1986). Hysteresis in the perception of motion direction as evidence for neural cooperativity. Nature 324, 253255.CrossRefGoogle ScholarPubMed
Williams, D. & Phillips, G. (1987). Cooperative phenomena in the perception of motion direction. Journal of the Optical Society of America A 4, 878885.CrossRefGoogle ScholarPubMed
Wilson, H.R. & Cowan, J.D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal 12, 124.CrossRefGoogle ScholarPubMed
Wilson, H.R. & Cowan, J.D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 5580.CrossRefGoogle ScholarPubMed
Wilson, H.R. (1977). Hysteresis in binocular grating perception: Contrast effects. Vision Research 17, 843851.CrossRefGoogle ScholarPubMed
Wilson, H.R., McFarlane, D.K. & Phillips, G.C. (1983). Spatial frequency tuning of orientation selective units estimated by oblique masking. Vision Research 23, 873882.CrossRefGoogle ScholarPubMed
Wilson, H.R. (1991). Psychophysical models of spatial vision and hyperacuity. In Spatial Form Vision, ed. Regan, D., pp. 6486. London: MacMillan.Google Scholar
Wilson, H.R., Ferrera, V.P. & Yo, C. (1992). Psychophysically motivated model for two-dimensional motion perception. Visual Neuroscience 9, 7997.CrossRefGoogle ScholarPubMed
Wilson, H.R. & Richards, W.A. (1992). Curvature and separation discrimination at texture boundaries. Journal of the Optical Society of America A 9, 16531662.CrossRefGoogle ScholarPubMed
Wilson, H.R. & Humanski, R. (1993). Spatial frequency adaptation and contrast gain control. Vision Research 33, 11331149.CrossRefGoogle ScholarPubMed
Wilson, H.R. & Mast, R. (1993). Illusory motion of texture boundaries. Vision Research 33, 14371446.CrossRefGoogle ScholarPubMed
Wilson, H.R. & Kim, J. (1994). Perceived motion in the vector sum direction. Vision Research 34, 18351842.CrossRefGoogle ScholarPubMed
Wilson, H.R. (1994). A model for two-dimensional motion perception: Coherence and transparency. In Analysis of Visual Motion, ed. Smith A.T., (in press).Google Scholar
Yo, C. & Wilson, H.R. (1992). Perceived direction of moving two-dimensional patterns depends on duration, contrast, and eccentricity. Vision Research 32, 135147.CrossRefGoogle ScholarPubMed
Young, M.P. & Yamane, S. (1992). Sparse population coding of faces in the inferotemporal cortex. Science 256, 13271331.CrossRefGoogle ScholarPubMed
Zhou, Y.X. & Baker, C.L. (1993). A processing stream in mammalian visual cortex neurons for non-Fourier responses. Science 261, 98101.CrossRefGoogle ScholarPubMed