Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T01:54:33.209Z Has data issue: false hasContentIssue false

Mechanistic modeling of vertebrate spatial contrast sensitivity and acuity at low luminance

Published online by Cambridge University Press:  09 May 2012

JOHN R. JARVIS*
Affiliation:
Imaging Technology Research Group, University of Westminster, Northwick Park, Harrow, Middlesex, UK
CHRISTOPHER M. WATHES
Affiliation:
The Royal Veterinary College, University of London, Hatfield, Herts, UK
*
*Address correspondence and reprint requests to: John R. Jarvis, Imaging Technology Research Group, University of Westminster, Northwick Park, Harrow, Middlesex, HA1 3TP, UK. E-mail: [email protected]

Abstract

The validity of the Barten theoretical model for describing the vertebrate spatial contrast sensitivity function (CSF) and acuity at scotopic light levels has been examined. Although this model (which has its basis in signal modulation transfer theory) can successfully describe vertebrate CSF, and its relation to underlying visual neurophysiology at photopic light levels, significant discrepancies between theory and experimental data have been found at scotopic levels. It is shown that in order to describe scotopic CSF, the theory must be modified to account for important mechanistic changes, which occur as cone vision switches to rod vision. These changes are divided into photon management factors [changes in optical performance (for a dilated pupil), quantum efficiency, receptor sampling] and neural factors (changes in spatial integration area, neural noise, and lateral inhibition in the retina). Predictions of both scotopic CSF and acuity obtained from the modified theory were found to be in good agreement with experimental values obtained from the human, macaque, cat, and owl monkey. The last two species have rod densities particularly suited for scotopic conditions.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arden, G.B. & Weale, K.A. (1954). Nervous mechanisms and dark-adaptation. The Journal of Physiology 125, 417426.CrossRefGoogle ScholarPubMed
Artal, P., Herreros De Tejada, P., Munoz Tedo, C. & Green, D.G. (1998). Retinal image quality in the rodent eye. Visual Neuroscience 15, 597605.CrossRefGoogle ScholarPubMed
Barlow, H.B. (1962). Measurements of the quantum efficiency of discrimination in human scotopic vision. The Journal of Physiology 160, 169188.CrossRefGoogle ScholarPubMed
Barlow, H.B. (1977). Retinal and central factors in human vision limited by noise. In Vertebrate Photoreception, ed. Barlow, H.B. & Fatt, P.New York: Academic Press.Google Scholar
Barlow, H.B., Fitzhugh, R. & Kuffler, S.W. (1957). Change of organization in the receptive fields of the cat’s retina during dark adaptation. The Journal of Physiology 137, 338354.CrossRefGoogle ScholarPubMed
Barten, P.J.G. (1999). Contrast Sensitivity of the Human Eye and Its Effects on Image Quality. Washington, DC: SPIE Optical Engineering Press.CrossRefGoogle Scholar
Berkley, M.A. (1976). Cat visual psychophysics: Neural correlates and comparisons with man. Progress in Psychobiology and Physiological Psychology 6, 63119.Google Scholar
Bisti, S. & Maffei, L. (1974). Behavioural contrast sensitivity of the cat in various visual meridians. The Journal of Physiology 241, 201210.CrossRefGoogle ScholarPubMed
Bito, L.Z. & Merritt, S.Q. (1980). Paradoxical ocular hypertensive effect of pilocarpine on echothiophate iodide-treated primate eyes. Investigative Ophthalmology & Visual Science 19, 371377.Google ScholarPubMed
Blake, R., Cool, S.J. & Crawford, M.L.J. (1974). Visual resolution in the cat. Vision Research 14, 12111217.CrossRefGoogle ScholarPubMed
Bonds, A.B. (1974). Optical quality of the living cat eye. The Journal of Physiology 243, 777795.CrossRefGoogle ScholarPubMed
Bonds, A.B. & MacLeod, D.I.A. (1974). The bleaching and regeneration of rhodopsin in the cat. The Journal of Physiology 242, 237253.CrossRefGoogle ScholarPubMed
Campbell, F.W. & Gubisch, R.W. (1966). Optical quality of the human eye. The Journal of Physiology 186, 558578.CrossRefGoogle ScholarPubMed
Campbell, F.W., Kulikowski, J.J. & Levinson, J.Z. (1966). The effect of orientation on the visual resolution of gratings. The Journal of Physiology 187, 427436.CrossRefGoogle ScholarPubMed
Castleman, K.R. (1996). Digital Image Processing. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Clarke, R.J., Zhang, H. & Gamlin, P.D.R. (2003). Characteristics of the pupillary light reflex in the alert rhesus monkey. Journal of Neurophysiology 89, 31793189.CrossRefGoogle ScholarPubMed
Coletta, N.J., Marcos, S., Wildsoet, C. & Troilo, D. (2003). Double-pass measurement of retinal image quality in the chicken eye. Optometry and Vision Science 80, 5057.CrossRefGoogle ScholarPubMed
Curcio, C.A. & Allen, K.A. (1990). Topography of ganglion cells in human retina. The Journal of Comparative Neurology 300, 525.CrossRefGoogle ScholarPubMed
Curcio, C.A., Sloan, K.R., Kalina, R.E. & Hendrickson, A.E. (1990). Human photoreceptor topography. The Journal of Comparative Neurology 292, 497523.CrossRefGoogle ScholarPubMed
Dacey, D.M. (1993). The mosaic of midget ganglion cells in the human retina. The Journal of Neuroscience 13, 53345355.CrossRefGoogle ScholarPubMed
Deeley, R.J., Drasdo, N. & Charman, W.N. (1991). A simple parametric model of the human ocular modulation transfer function. Ophthalmic and Physiological Optics 11, 9193.CrossRefGoogle ScholarPubMed
DePalma, J.J. & Lowry, E.M. (1962). Sine-wave response of the visual system II. Sine-wave and square-wave contrast sensitivity. Journal of the Optical Society of America 52, 328335.CrossRefGoogle Scholar
Detwiler, S.R. (1941). The eye of the owl monkey. The Anatomical Record 80, 233239.CrossRefGoogle Scholar
De Valois, R.L. & De Valois, K.K. (1990). Spatial Vision. Oxford Psychology Series 14. New York: Oxford University Press.Google Scholar
De Valois, R.L., Morgan, H. & Snodderley, D.M. (1974). Psychophysical studies of monkey vision – III. Spatial luminance contrast sensitivity tests of macaque and human observers. Vision Research 14, 7581.CrossRefGoogle Scholar
Donner, K. & Hemila, S. (1996). Modelling the spatiotemporal modulation response of ganglion cells with difference-of-Gaussians receptive fields: Relation to photoreceptor response kinetics. Visual Neuroscience 13, 173186.CrossRefGoogle ScholarPubMed
Douglas, R.H. (2010). Vision: Vertebrates. In Encyclopedia of Animal Behavior, Vol. 3, ed. Breed, M.D. & Moore, J., pp. 525543. Oxford: Academic Press.CrossRefGoogle Scholar
D’Zmura, M. & Lennie, P. (1986). Shared pathways for rod and cone vision. Vision Research 26, 12731280.CrossRefGoogle ScholarPubMed
Enroth-Cugell, C. & Lennie, P. (1975). The control of retinal ganglion cell discharge by receptive field surrounds. The Journal of Physiology 247, 551578CrossRefGoogle ScholarPubMed
Ghim, M.M. (1997). The effects of retinal illumination and target luminance on the contrast sensitivity function of pigeons. Masters Thesis, University of Maryland, College Park, MD.Google Scholar
Gianfranceschi, L., Fiorentini, A. & Maffei, L. (1999). Behavioural visual acuity of wild type and bcl2 transgenic mouse. Vision Research 39, 569574.CrossRefGoogle ScholarPubMed
Goodchild, A.K., Ghosh, K.K. & Martin, P.R. (1996). Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat and the marmoset Callithrix jacchus. The Journal of Comparative Neurology 366, 5575.3.0.CO;2-J>CrossRefGoogle Scholar
Gover, N., Jarvis, J.R., Abeyesinghe, S.M. & Wathes, C.M. (2009). Stimulus luminance and the spatial acuity of domestic fowl (Gallus g. domesticus). Vision Research 49, 27472753.CrossRefGoogle ScholarPubMed
Graham, D.J., Chandler, D.M. & Field, D.J. (2006). Can the theory of “whitening” explain the centre-surround properties of retinal ganglion cell receptive fields? Vision Research 46, 29012913.CrossRefGoogle Scholar
Hammond, P. & Mouat, G.S.V. (1985). The relationship between feline pupil size and luminance. Experimental Brain Research 59, 485490.CrossRefGoogle ScholarPubMed
Hess, R.F. (1990). Rod-mediated vision: Role of post-receptoral filters. In Night Vision, ed. Hess, R.F., Sharpe, L.T. & Norby, K., pp 348. Cambridge, UK: Cambridge University Press.Google Scholar
Hughes, A. (1977). The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization. In The Visual System in Vertebrates, ed. Crescitelli, F., pp. 613756. New York: Springer-Verlag.CrossRefGoogle Scholar
Jacobs, G.H. (1977). Visual capabilities of the owl monkey (Aotus trivirgatus). Vision Research 17, 821825.CrossRefGoogle Scholar
Jarvis, J.R. (1994). The relationship between optical MTF and sharpness performance of colour negative materials containing DIR coupler. The Journal of Photographic Science 42, 1823.CrossRefGoogle Scholar
Jarvis, J.R., Abeyesinghe, S.M., McMahon, C.E. & Wathes, C.M. (2009). Measuring and modelling the spatial contrast sensitivity of the chicken (Gallus g. domesticus). Vision Research 49, 14481454.CrossRefGoogle ScholarPubMed
Jarvis, J.R. & Wathes, C.M. (2007). On the calculation of optical performance factors from vertebrate spatial contrast sensitivity. Vision Research 47, 22592271.CrossRefGoogle ScholarPubMed
Jarvis, J.R. & Wathes, C.M. (2008). A mechanistic inter-species comparison of spatial contrast sensitivity. Vision Research 48, 22842292.CrossRefGoogle ScholarPubMed
Kang, I., Reem, R.E., Kaczmarowski, A.L. & Malpeli, J.G. (2009). Contrast sensitivity of cats and humans in scotopic and mesopic conditions. Journal of Neurophysiology 102, 831840.CrossRefGoogle ScholarPubMed
Kaplan, E., Marcus, S. & So, Y.T. (1979). Effects of dark adaptation on spatial and temporal properties of receptive fields in cat lateral geniculate nucleus. The Journal of Physiology 294, 561580.CrossRefGoogle ScholarPubMed
Le Grand, Y. (1968). Light, Colour and Vision. London: Chapman & Hall.Google Scholar
Makous, W. (2004). Scotopic vision. In The Visual Neurosciences, ed. Werner, J.S. & Chalupa, L.M., pp. 838850. Boston, MA: MIT Press.Google Scholar
Nagaraja, N.S. (1964). Effect of luminance noise on contrast thresholds. Journal of the Optical Society of America 54, 950955.CrossRefGoogle Scholar
Ogden, T.E. (1975). The receptor mosaic of Aotes trivirgatus: Distribution of rods and cones. The Journal of Comparative Neurology 163, 193202.CrossRefGoogle ScholarPubMed
Osterberg, G. (1935). Topography of the layer of rods and cones in the human retina. Acta Ophthalmologica. Supplement 6, 1103.Google Scholar
Pasternak, T. & Horn, K. (1991). Spatial vision of the cat: Variation with eccentricity. Visual Neuroscience 6, 151158.CrossRefGoogle ScholarPubMed
Pasternak, T. & Merigan, W.H. (1981). The luminance dependence of spatial vision in the cat. Vision Research 21, 13331339.CrossRefGoogle ScholarPubMed
Peichl, L. & Wassle, H. (1979). Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. The Journal of Physiology 291, 117141.CrossRefGoogle ScholarPubMed
Pelli, D.G. (1983). The spatiotemporal spectrum of the equivalent noise of human vision. Investigative Ophthalmology & Visual Science (Suppl. 4), 46.Google Scholar
Pelli, D.G. (1990). The quantum efficiency of vision. In Vision: Coding and Efficiency, ed. Blakemore, C., pp. 324. Cambridge, UK: Cambridge University Press.Google Scholar
Pettigrew, J.D., Dreher, B., Hopkins, C.S., McCall, M.J. & Brown, M. (1988). Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: Implications for visual acuity. Brain, Behavior and Evolution 32, 3956.CrossRefGoogle ScholarPubMed
Regan, D. (1991). Spatial vision. In Vision and Visual Dysfunction, ed. Cronly-Dillon, J.Boston, MA: CRC.Google Scholar
Robson, J.G. & Graham, N. (1981). Probability summation and regional variation in contrast sensitivity across the visual field. Vision Research 21, 409418.CrossRefGoogle ScholarPubMed
Rodieck, R.W. & Watanabe, M. (1993). Survey of morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus. The Journal of Comparative Neurology 338, 289303.CrossRefGoogle Scholar
Rose, A. (1948). The sensitivity performance of the human eye on an absolute scale. Journal of the Optical Society of America 38, 196208.CrossRefGoogle Scholar
Ross, C.F. & Kirk, E.C. (2007). Evolution of eye size and shape in primates. Journal of Human Evolution 52, 294313.CrossRefGoogle ScholarPubMed
Roufs, J.A.J. (1974). Dynamic properties of vision- VI. Stochastic threshold fluctuations and their effect on flash-to-flicker sensitivity ration. Vision Research 14, 871888.CrossRefGoogle Scholar
Rovamo, J., Mustonen, J. & Nasanen, R. (1994). Modelling contrast sensitivity as a function of retinal illuminance and grating area. Vision Research 34, 13011314.CrossRefGoogle ScholarPubMed
Schade, O. (1956). Optical and photoelectric analog of the eye. Journal of the Optical Society of America 46, 721739.CrossRefGoogle ScholarPubMed
Scheibner, H. & Baumgardt, E. (1967). Sur l’emploi en optique physiologique des grandeurs scotopiques. Vision Research 7, 5963.CrossRefGoogle Scholar
Schlaer, S. (1937). The relation between visual acuity and illumination. The Journal of General Physiology 21, 165188.CrossRefGoogle Scholar
Steinberg, R.H., Reid, M. & Lacy, P.L. (1973). The distribution of rods and cones in the retina of the cat (Felis domesticus). The Journal of Comparative Neurology 148, 229248.CrossRefGoogle ScholarPubMed
Stone, J. (1965). A quantitative analysis of the distribution of ganglion cells in the cat’s retina. The Journal of Comparative Neurology 124, 337352.CrossRefGoogle ScholarPubMed
Tanner, W.P. & Birdsall, T.G. (1958). Definitions of d1 and η as psychophysical measures. Journal of the Optical Society of America 49, 922928.Google Scholar
Uhlrich, D.J., Essock, E.A. & Lehmkuhle, S. (1981). Cross-species correspondence of spatial contrast sensitivity functions. Behavioural Brain Research 2, 291299.CrossRefGoogle ScholarPubMed
Vakkur, G., Bishop, P. & Kazak, W. (1963). Visual optics in the cat, including posterior nodal distance and retinal landmarks. Vision Research 3, 289341.CrossRefGoogle Scholar
van Meeteren, A. (1973). Visual Aspects of Image Intensification. Report of the Institute for Perception, TNO, Soesterberg, The Netherlands.Google Scholar
van Meeteren, A. & Boogaard, J. (1973). Visual contrast sensitivity with ideal image intensifiers. Optik 37, 179191.Google Scholar
van Meeteren, A. & Vos, J.J. (1972). Resolution and contrast sensitivity at low luminance levels. Vision Research 12, 825833.CrossRefGoogle Scholar
van Nes, F.L. & Bouman, M.A. (1967). Spatial modulation transfer in the human eye. Journal of the Optical Society of America 57, 401406.CrossRefGoogle Scholar
Watson, A.B. & Ahumada, A.J. (2005). A standard model for foveal detection of spatial contrast. Journal of Vision 5, 717740.CrossRefGoogle ScholarPubMed
Watson, A.B. & Solomon, J.A. (1997). Model of visual contrast gain control and pattern masking. Journal of the Optical Society of America 14, 23792391.CrossRefGoogle ScholarPubMed
Williams, R.A. & Boothe, R.G. (1981). Development of optical quality in the infant monkey (Macaca nemestrina). Investigative Ophthalmology & Visual Science 21, 728736.Google ScholarPubMed
Yamada, E.S., Silveira, L.C.L., Perry, V.H. & Franco, E.C.S. (2001). M and P retinal ganglion cells of the owl monkey: Morphology, size and photoreceptor convergence. Vision Research 41, 119131.CrossRefGoogle ScholarPubMed
Yang, J., Qi, X. & Makous, W. (1995). Zero frequency masking and a model of contrast sensitivity. Vision Research 35, 19651978.CrossRefGoogle Scholar