Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T07:58:13.958Z Has data issue: false hasContentIssue false

Luminance and color effects on localization of briefly flashed visual stimuli

Published online by Cambridge University Press:  02 June 2009

Roger E. Graves
Affiliation:
Department of Psychology, University of Victoria

Abstract

Visual localization was studied by flashing small stimuli on a green background and requiring observers to press keys to indicate whether the stimulus appeared to the left or right of fixation. The results suggest that, for small (0.25 deg) briefly flashed (17 ms) stimuli at an eccentric location (10 deg), color contrast is not useable and localization presumably must rely on the magnocellular pathway. When stimulus size and duration were increased at 10-deg eccentricity, isochromatic stimuli could be localized at less than 10% luminance contrast (again suggesting use of the magnocellular high sensitivity luminance-contrast system), but isoluminant color-contrast stimuli could also be localized (suggesting use of the color-contrast sensitive parvocellular system). Thus, the results indicate that, dependent on stimulus conditions, both magnocellular and parvocellular pathways were utilized by normal observers in this localization task.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonds, A.B. (1993). The encoding of cortical contrast gain control. In Contrast Sensitivity: Proceedings of the Retina Research Foundation Symposia, v5, ed. Shapley, R. & Lam, D.M-K., pp. 215230. Cambridge, Massachusetts: MIT Press.Google Scholar
Chaparro, A., Stromeyer, C.F. III., Huang, E.P., Kronauer, R.E. & Eskew, R.T. Jr. (1993). Colour is what the eye sees best. Nature 361, 348350.CrossRefGoogle ScholarPubMed
Dacey, D.M. (1993). The mosaic of midget ganglion cells in the human retina. Journal of Neuroscience 13, 53345355.CrossRefGoogle ScholarPubMed
De Renzi, E. (1982). Disorders of Space Exploration and Cognition. New York: Wiley.Google Scholar
Desimone, R., Albright, T.D., Gross, C.G. & Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. Journal of Neuroscience 4, 20512062.CrossRefGoogle ScholarPubMed
Graves, R.E. & Bradley, R. (1991). Millisecond timing on the IBM PC/XT/AT and PS/2: A review of the options and corrections for the Graves and Bradley algorithm. Behavior Research Methods Instruments and Computers 23, 377379.CrossRefGoogle Scholar
Graves, R.E. & Jones, B.S. (1992). Conscious visual perceptual awareness vs. nonconscious visual spatial localization examined with normal subjects using possible analogues of blindsight and neglect. Cognitive Neuropsychology 9, 487508.CrossRefGoogle Scholar
Graves, R.E. & Kirkby, B.S. (1994). Automatic altentional system compromised by isoluminant stimuli. Journal of the International Neuro-psychological Society 1, 340. (Abstract of paper presented at the Twenty-Second Annual Meeting of the International Neuropsycho-logical Society, Cincinnati, Ohio, February 1994.)Google Scholar
Heilman, K.M., Watson, R.T. & Valenstein, E. (1993). Neglect and related disorders. In Clinical Neuropsychology, 3rd edition, ed. Heilman, K.M. & Valenstein, E., pp. 279336. Oxford: Oxford University Press.CrossRefGoogle Scholar
Ishihara, S. (1993). The Series of Plates Designed as a Test for Colour-Blindness. Tokyo, Japan: Kanehara & Co.Google Scholar
Lennie, P. (1993). Roles of M and P pathways. In Contrast Sensitivity: Proceedings of the Retina Research Foundation Symposia, v5, ed. Shapley, R. & Lam, D.M-K., pp. 201212. Cambridge, Massachusetts: MIT Press.Google Scholar
Livingstone, M. & Hubel, D. (1987). Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience 7, 34163468.CrossRefGoogle ScholarPubMed
Livingstone, M. & Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740749.CrossRefGoogle ScholarPubMed
LüSchow, A. & Nothdurft, H.C. (1993). Pop-out of orientation but no pop-out of motion at isoluminance. Vision Research 33, 91104.CrossRefGoogle ScholarPubMed
Merigan, W.H. & Maunsell, J.H.R. (1993). How parallel are the primate visual pathways? Annual Reviews of Neuroscience 16, 369402.CrossRefGoogle ScholarPubMed
Morgan, M.J. & Aiba, T.S. (1985). Positional acuity with chromatic stimuli. Vision Research 25, 689695.CrossRefGoogle ScholarPubMed
Perry, V.H., Oehler, R. & Cowey, A. (1984). Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12, 11011123.CrossRefGoogle Scholar
Pokorny, J. & Smith, V.C. (1986). Colorimetry and color discrimination. In Handbook of Perception and Human Performance, Volume I, ed. Boff, K.R., Kaufmann, L. & Thomas, J.P., Chapter 8. New York: John Wiley and Sons.Google Scholar
Posner, M.I., Cohen, Y. & Rafal, R.D. (1982). Neural systems control of spatial orienting. Philosophical Transactions of the Royal Society B (London) 298, 187198.Google ScholarPubMed
Posner, M.I., Walker, J.A., Friedrich, F.A. & Rafal, R.D. (1984). Effects of parietal injury on covert orienting of attention. Journal of Neuroscience 4, 18631874.CrossRefGoogle ScholarPubMed
Posner, M.I., Walker, J.A., Friedrich, F.A. & Rafal, R.D. (1987). How do the parietal lobes direct covert attention? Neuropsychologia 25, 135145.CrossRefGoogle ScholarPubMed
Purpura, K., Kaplan, E. & Shapley, R.M. (1988). Background light and the contrast gain of primate P and M retinal ganglion cells. Proceedings of the National Academy of Sciences of the U.S.A. 85, 45344537.CrossRefGoogle ScholarPubMed
Regan, D. & Lee, B.B. (1993). A comparison of the 40-Hz response in man, and the properties of macaque ganglion cells. Visual Neuroscience 10, 439445.CrossRefGoogle ScholarPubMed
Robinson, D.L., Goldberg, M.E. & Stanton, G.B. (1978). Parietal association cortex in the primate: Sensory mechanisms and behavioral modulations. Journal of Neurophysiology 41, 910932.CrossRefGoogle ScholarPubMed
Schiller, P.M. & Logothetis, N.K. (1990). The color-opponent and broad-band channels of the primate visual system. Trends in Neurosciences 13, 392398.CrossRefGoogle ScholarPubMed
Silveira, L.C.L. & Perry, V.H. (1991). The topography of magno-cellular projecting ganglion cells (m-ganglion cells) in the primate retina. Neuroscience 40, 217237.CrossRefGoogle Scholar
Ungerleider, L.G. & Mishkin, M. (1982). Two cortical visual systems. In The Analysis of Visual Behavior, ed. Ingle, D.J., Mansfield, R.J.W. & Goodale, M.S., pp. 549586. Cambridge, Massachusetts: MIT Press.Google Scholar
Watson, A.B. (1992). Transfer of contrast sensitivity in linear visual networks. Visual Neuroscience 8, 6576.CrossRefGoogle ScholarPubMed
Zihl, J. & Von Cramon, D. (1979). The contribution of the “second” visual system to directed visual attention in man. Brain 102, 835856.CrossRefGoogle ScholarPubMed