Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T09:35:30.331Z Has data issue: false hasContentIssue false

Localization of the CD15 carbohydrate epitope in the vertebrate retina

Published online by Cambridge University Press:  02 June 2009

Christian Andressen
Affiliation:
Institute of Neuroanatomy, University of Düsseldorf, Moorenstrasse 5, D-40001 Düsseldorf, Germany
Jürgen K. Mai
Affiliation:
Institute of Neuroanatomy, University of Düsseldorf, Moorenstrasse 5, D-40001 Düsseldorf, Germany

Abstract

The distribution of the carbohydrate epitope CD 15, a putative cell adhesion molecule, was studied in adult vertebrate retinas by light-microscopic immunohistochemistry. Except for Old World primates, in which no immunoreactivity was detectable, all other species expressed the epitope on retinal interneurones. Subpopulations of stratified amacrine cells were found in all species with the exception of bats and marmoset monkeys, and bipolar cells were immunoreactive in frogs and all amniotic animals. Ganglion cells were labelled in urodelian, in all sauromorphian, as well as in some mammalian species. In some species, the distribution of immunoreactive neurones was correlated to areas of retinal specialization such as the visual streak in frogs and the dorsotemporal field in birds. In these parts of the retina with enhanced visual acuity, more CD 15 glycosylated bipolar cells were found than in other parts. Among mammals, labelled bipolar cells were found exclusively in species with cone-dominated retinas. This comparative study shows that CD 15 expression is consistently membrane associated in morphologically defined subsets of amacrine, bipolar, and ganglion cells throughout the vertebrate phylum. Its distribution pattern was found to depend more on the visual behavior of a given species (cone-dominated or rod-dominated retina) than on phylogenetic proximity between species.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andressen, C., Moertter, K. & Mai, J.K. (1996). Spatiotemporal expression of CD 15 in the developing chick retina. Developmental Brain Research 9, 263271.CrossRefGoogle Scholar
Bartsch, D. & Mai, J.K. (1991). Distribution of the 3-fucosyl-N-acetyl-lactosamin (FAL) in the adult mouse brain. Cell and Tissue Research 263, 353366.CrossRefGoogle ScholarPubMed
Bird, J.M. & Kimber, S.J. (1984). Oligosaccharide containing fucose linked α (1–3) and α (1–4) to N-acetylglucosamine cause decompaction of mouse morulae. Developmental Biology 104, 449460.CrossRefGoogle ScholarPubMed
Bloomfield, S.A. & Miller, R.F. (1986). A functional organization of ON and OFF pathways in the rabbit retina. Journal of Neuroscience 6, 113.CrossRefGoogle Scholar
Boycott, B.B. & Dowling, J.E. (1969). Organization of the primate retina: Light microscopy. Philosophical Transactions of the Royal Society B (London) 255, 109184.Google Scholar
Brandley, B.K., Swiedler, S.J. & Robbins, P.W. (1990). Carbohydrate ligands on the LEC cell adhesion molecules. Cell 63, 861863.CrossRefGoogle ScholarPubMed
Dowling., J.E. (1987). The Retina: An Approachable Part of the Brain. Cambridge, Massachusetts: Belknapp Press.Google Scholar
Dubin, M. (1970). The inner plexiform layer of the vertebrate retina: A quantitative and comparative electron-microscopic analysis. Journal of Comparative Neurology 140, 479506.CrossRefGoogle ScholarPubMed
Ehrlich, D. (1981). Regional specialization of the chick retina as revealed by the size and density of neurons in the ganglion cell layer. Journal of Comparative Neurology 195, 643657.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. (1983). 'Starburst' amacrine cells and cholinergic neurones: Symmetric ON and OFF amacrine cells of rabbit retina. Brain Research 261, 138144.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. & Kolb, H. (1976). Structural basis of the on and off center responses in retinal ganglion cells. Science 194, 193195.CrossRefGoogle ScholarPubMed
Famiglietti, E.V., Kaneko, A. & Tachibana, M. (1977). Neuronal architecture of On and Off pathways to ganglion cells in carp retina. Science 198, 12671269.CrossRefGoogle Scholar
Fenderson, B.A., Zehavi, U. & Hakomori, S. (1984). A multivalent lacto-N-fucopentaose III–lysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective. Journal of Experimental Medicine 160, 15911596.CrossRefGoogle ScholarPubMed
Hutchins, J.B. (1987). Review: Acetylcholine as a neurotransmitter in the vertebrate retina. Experimental Eye Research 45, 138.CrossRefGoogle ScholarPubMed
Jacobs, G.H. (1993). The distribution and nature of color vision among the mammals. Biological Reviews 68, 413471.CrossRefGoogle ScholarPubMed
Kerr, M.A. & Stocks, S.C. (1992). The role of CD15- (Lex)-related carbohydrates in neutrophil adhesion. Histochemical Journal 24, 811826.CrossRefGoogle Scholar
Kolb, H. (1982). The morphology of the bipolar cells, amacrine cells and the ganglion cells in the turtle Pseudemys scripta elegans. Philosophical Transitions of the Royal Society B (London) 258, 261283.Google Scholar
Kolb, H., Nelson, R. & Mariani, A. (1981). Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study. Vision Research 21, 10811114.CrossRefGoogle ScholarPubMed
Koontz, M.A. & Hendrickson, A. E. (1987). Stratified distribution of synapses in the inner plexiform layer of primate retina. Journal of Comparative Neurology 263, 581592.CrossRefGoogle ScholarPubMed
Mai, J.K. & Schoenlau, C. (1992). Age-related expression pattern of the CD 15 epitope in the human lateral geniculate nucleus (LGN). Histochemical Journal 24, 878889.CrossRefGoogle Scholar
Marani, E. & Mai, J.K. (1992). Expression of the carbohydrate epitope 3-fucosy-N-acetyl-lactosamine (CD15) in the vertebrate cerebellar cortex. Histochemical Journal 24, 852868.CrossRefGoogle ScholarPubMed
Marc, R.E. (1986). Neurochemical stratification in the inner plexiform layer of the vertebrate retina. Vision Research 26, 223238.CrossRefGoogle ScholarPubMed
Mariani, A.P. (1990). Amacrine cells of the Rhesus monkey retina. Journal of Comparative Neurology 301, 382400.CrossRefGoogle ScholarPubMed
Mosinger, J.L., Yazulla, S. & Studholme, K.M. (1986). GABA-like immunoreactivity in the vertebrate retina: A species comparison. Experimental Eye Research 42, 631644.CrossRefGoogle ScholarPubMed
Nelson, R. & Kolb, H. (1983). Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Research 23, 11831195.CrossRefGoogle ScholarPubMed
Nelson, R., Famiglietti, E.V. & Kolb, H. (1978). Intracellular staining reveals different levels of stratification of on- and off-center ganglion cells in the cat retina. Journal of Neurophysiology 41, 472483.CrossRefGoogle Scholar
Pettigrew, J.D., Jamieson, B.G.M., Robson, S.K., Hall, L.S., McKnally, K.I. & Cooper, H.M. (1989). Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and primates). Philosophical Transitions of the Royal Society B (London) 325, 489559.Google ScholarPubMed
Plank, J. & Mai, J.K. (1992). Developmental expression of the 3-fucosyl-N-acetyl-lactosamine-(FAL) epitope by an olfactory receptor cell sub-population and in the olfactory bulb of the rat. Developmental Brain Research 66, 257261.CrossRefGoogle Scholar
Polyak, S.L. (1941). The Retina. Chicago, Illinois: University of Chicago Press.Google Scholar
Poppema, S., Bhan, A.K., Reinherz, E.L., McCluskay, R. & Schlossmann, S.F. (1981). Distribution of T-cell subsets in human lymph nodes. Journal of Experimental Medicine 153, 3041.CrossRefGoogle ScholarPubMed
Rager, U., Racer, G. & Frey, B. (1993). Central retinal area is not the site where ganglion cells are generated first. Journal of Comparative Neurology 334, 529544.CrossRefGoogle Scholar
Ramony, Cajal S. (1892). La rétine des vertébrés. In La cellule 9, pp. 119257. Paris, A. Malsine, English translation: The Structure of the Retina. Compiled and translated by Thorpe, S. and Glickstein, M.. Springfield, Illinois: Thomas.Google Scholar
Reifenberger, G., Mai, J.K., Krajewski, S. & Wechsler, W. (1987). Distribution of the anti-Leu-7, anti-Leu-11a & the anti-Leu-Ml immunoreactivity in the brain of the adult rat. Cell and Tissue Research 248, 305313.CrossRefGoogle ScholarPubMed
Schoenlau, C. & Mai, J.K. (1995). Age-related expression patterns of the CD15 (3-fucosyl-N-acetyl-lactosamine) epitope in the monkey (Cerco-pithecus aethiops aethiops L.) lateral geniculate nucleus. European Journal of Morphology 33, 119128.Google Scholar
Solter, D. & Knowles, B.B. (1978). Monoclonal antibody defining a stage-specific embryonic antigene (SSEA-1). Proceedings of the National Academy of Sciences of the U.S.A. 75, 55655569.CrossRefGoogle ScholarPubMed
Springer, T.A. & Lasky, L.A. (1991). Cell adhesion: Sticky sugars for selectins. Nature 349, 196197.CrossRefGoogle ScholarPubMed
Uusitalo, M. & Kivelä, T. (1994). Differential distribution of the HNK-1 carbohydrate epitope in the vertebrate retina. Current Eye Research 13, 697704.CrossRefGoogle ScholarPubMed
Wagner, H.-J. & Wagner, E. (1988). Amacrine cells in the retina of a teleost fish, the roach (Rutilus rutilus). A Golgi study on differentiation and layering. Philosophical Transactions of the Royal Society B (London) 321, 263324.Google Scholar
Walls, C.A. (1942). The Vertebrate Eye and Its Adaptive Radiation. Bloomfield Hills, Michigan: Cranbrook Institute, Science Bulletin 19.Google Scholar
Witkovsky, P. & Schütte, M. (1991). The organization of dopaminergic neurones in the vertebrate retinas. Visual Neuroscience, 7, 113124.CrossRefGoogle ScholarPubMed