Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-07T16:14:45.024Z Has data issue: false hasContentIssue false

Linking perception to neural activity as measured by visual evoked potentials

Published online by Cambridge University Press:  24 July 2013

ANTHONY M. NORCIA*
Affiliation:
Department of Psychology, Stanford University, Stanford, California
*
*Address correspondence to: Anthony M. Norcia, Department of Psychology, Stanford University, 450 Serra Mall, Stanford, CA 94305. E-mail: [email protected]

Abstract

Linking propositions have played an important role in refining our understanding of the relationship between neural activity and perception. Over the last 40 years, visual evoked potentials (VEPs) have been used in many different ways to address questions of the relationship between neural activity and perception. This review organizes and discusses this research within the linking proposition framework developed by Davida Teller, and her colleagues. A series of examples from the VEP literature illustrates each of the five classes of linking propositions originally proposed by Davida Teller. The related concept of the bridge locus—the site at which neural activity can be said to first be proscriptive of perception—is discussed and a suggestion is made that the concept be expanded to include an evolution over time and cortical area.

Type
Retrospective and prospective analyses of linking propositions
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aissani, C., Cottereau, B., Dumas, G., Paradis, A.L. & Lorenceau, J. (2011). Magnetoencephalographic signatures of visual form and motion binding. Brain Research 1408, 2740. doi: 10.1016/j.brainres.2011.05.051.CrossRefGoogle ScholarPubMed
Ales, J.M., Appelbaum, L.G., Cottereau, B.R. & Norcia, A.M. (2012 a). The time course of shape discrimination in the human brain. Neuroimage 67C, 7788. doi: 10.1016/j.neuroimage.2012.10.044.Google Scholar
Ales, J.M., Farzin, F., Rossion, B. & Norcia, A.M. (2012 b). An objective method for measuring face detection thresholds using the sweep steady-state visual evoked response. Journal of Vision 12, 118. doi: 10.1167/12.10.18.CrossRefGoogle ScholarPubMed
Appelbaum, L.G., Wade, A.R., Vildavski, V.Y., Pettet, M.W. & Norcia, A.M. (2006). Cue-invariant networks for figure and background processing in human visual cortex. Journal of Neuroscience 26, 1169511708.CrossRefGoogle ScholarPubMed
Brown, R.J. & Norcia, A.M. (1997). A method for investigating binocular rivalry in real-time with the steady-state VEP. Vision Research 37, 24012408.CrossRefGoogle ScholarPubMed
Campbell, F.W. & Kulikowski, J.J. (1972). The visual evoked potential as a function of contrast of a grating pattern. The Journal of Physiology 222, 345356.CrossRefGoogle ScholarPubMed
Campbell, F.W. & Maffei, L. (1970). Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. The Journal of Physiology 207, 635652.CrossRefGoogle ScholarPubMed
Denys, K., Vanduffel, W., Fize, D., Nelissen, K., Peuskens, H., Van Essen, D. & Orban, G.A. (2004). The processing of visual shape in the cerebral cortex of human and nonhuman primates: a functional magnetic resonance imaging study. The Journal of Neuroscience 24, 25512565.CrossRefGoogle ScholarPubMed
DiCarlo, J.J. & Maunsell, J.H. (2005). Using neuronal latency to determine sensory-motor processing pathways in reaction time tasks. The Journal of Neurophysiology 93, 29742986. doi: 00508.2004[pii]: 10.1152/jn.00508.2004.CrossRefGoogle ScholarPubMed
Hou, C., Pettet, M.W. & Norcia, A.M. (2004). Neural correlates of subjective contour processing: a comparison of normals and amblyopes. ARVO e-abstracts S2576.Google Scholar
Hou, C., Pettet, M.W., Vildavski, V.Y. & Norcia, A.M. (2006). Neural correlates of shape-from-shading. Vision Research 46, 10801090. doi: 10.1016/j.visres.2005.10.017.CrossRefGoogle ScholarPubMed
Kornmeier, J. & Bach, M. (2012). Ambiguous figures—what happens in the brain when perception changes but not the stimulus. Frontiers in Human Neuroscience 6, 51. doi: 10.3389/fnhum.2012.00051.CrossRefGoogle Scholar
Kourtzi, Z. & Kanwisher, N. (2000). Cortical regions involved in perceiving object shape. The Journal of Neuroscience 20, 33103318.CrossRefGoogle ScholarPubMed
Michel, C.M., Brandies, D., Gianotti, L.R.R. & Wackerman, J. (2009). Electrical Neuroimaging. New York: Cambridge University Press.CrossRefGoogle Scholar
Teller, D.Y. (1980). Locus questions in visual science. In Visual Coding and Adaptibility, ed. Harris, C., Hillsdale, NJ: Erlbaum Associates.Google Scholar
Teller, D.Y. (1984). Linking propositions. Vision Research 24, 12331246.CrossRefGoogle ScholarPubMed
Teller, D.Y. & Pugh, E.N. (1983). Linking propositions in color vision. In Colour Vision: Physiology and Psychophysics, ed. Mollon, J.D. & Sharpe, L.D., pp. 1121. London, UK: Academic Press.Google Scholar
Zhang, P., Jamison, K., Engel, S., He, B. & He, S. (2011). Binocular rivalry requires visual attention. Neuron 71, 362369. doi: 10.1016/j.neuron.2011.05.035.CrossRefGoogle ScholarPubMed