Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T20:20:02.708Z Has data issue: false hasContentIssue false

The horizontal cells of artiodactyl retinae: A comparison with Cajal's descriptions

Published online by Cambridge University Press:  02 June 2009

Daniele Sandman
Affiliation:
Max-Planck-Institut für Hirnforschung, Deutschordenstr. 46, D-60528 Frankfurt a. M., Germany
Brian B. Boycott
Affiliation:
Department of Anatomy and Cell Biology, UMDS (Guy's Campus), London Bridge, London SE1 9RT, UK
Leo Peichl
Affiliation:
Max-Planck-Institut für Hirnforschung, Deutschordenstr. 46, D-60528 Frankfurt a. M., Germany

Abstract

The morphology of horizontal cells in ox, sheep, and pig retinae as observed after Lucifer Yellow injections are described and compared with the descriptions of Golgi-stained cells by Ramón y Cajal (1893). Horizontal cells in the retinae of less domesticated species, wild pig, fallow and sika deer, mouflon, and aurochs were also examined. All these retinae have two types of horizontal cell; their morphologies are in common, although with some familial differences. Their basic appearance is as Cajal described; except in one important respect, a single axon-like process could not be identified on the external horizontal cells. It is concluded that external horizontal cells of artiodactyls correspond to the axonless (A-type) cells of other mammals. Cajal's internal horizontal cells have a single axon which contacts rods. This type corresponds to the B-type cells of other mammalian retinae. Artiodactyl A- and B-type horizontal cells differ from those of many other mammals in that the B-type dendritic tree is robust and the A-type dendritic tree is delicate. Historically, this morphological difference between orders of mammals has led to some confusion. The comparisons presented here suggest that the morphological types of primate horizontal cells can be integrated into a general mammalian classification.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bloomfield, S.A. (1992). A unique morphological subtype of horizontal cell in the rabbit retina with orientation-sensitive response properties. Journal of Comparative Neurology 320, 6985.Google Scholar
Boycott, B.B. (1988). Horizontal cells of mammalian retinae. Neuroscience Research (Suppl.) 8, S97–S111.Google ScholarPubMed
Boycott, B.B. & Dowling, J.E. (1969). Organization of the primate retina: Light microscopy. Philosophical Transactions of the Royal Society (London) B 255, 109184.Google Scholar
Boycott, B.B., Peichl, L. & Wässle, H. (1978). Morphological types of horizontal cell in the retina of the domestic cat. Proceedings of the Royal Society (London) B 203, 229245.Google ScholarPubMed
Boycott, B.B., Hopkins, J.M. & Sperling, H.G. (1987). Cone connections of the horizontal cells of the rhesus monkey's retina. Proceedings of the Royal Society (London) B 229, 345379.Google Scholar
Chun, M.-H. & Wässle, H. (1993). Some horizontal cells of the bovine retina receive input synapses in the inner plexiform layer. Cell Tissue Research 272, 447457.CrossRefGoogle ScholarPubMed
Corbet, G.B. & Hill, J.E. (1980). A World List of Mammalian Species. London: British Museum (Natural History) & Ithaca, New York: Cornell University Press.Google Scholar
Dacheux, R.F. & Raviola, E. (1982). Horizontal cells in the retina of the rabbit. Journal of Neuroscience 2, 14861493.CrossRefGoogle ScholarPubMed
Dowling, J.E., Brown, J.E. & Major, D. (1966). Synapses of horizontal cells in rabbit and cat retinas. Science, 153, 16391641.Google Scholar
Famiglietti, E.V. (1990). A new type of wide-field horizontal cell, presumably linked to blue cones, in rabbit retina. Brain Research 535, 174179.CrossRefGoogle ScholarPubMed
Gallego, A. (1965). Connexions transversales au niveau des couches plexiformes de la rétine. Actualités Neurophysiologiques 6e. sér., pp. 527. Paris: Masson et Cie.Google Scholar
Gallego, A. (1976). Comparative study of the horizontal cells in the vertebrate retina: Mammals and birds. In Neural Principles in Vision, ed. Zettler, F. & Weiler, R., pp. 2662. Berlin: Springer Verlag.CrossRefGoogle Scholar
Gallego, A. (1982). Organization of the outer plexiform layer of the tetrapoda retina: Horizontal cells of mammalian and avian retina. In The Structure of the Eye, ed. Hollyfield, J.G., pp. 151164. Amsterdam: Elsevier North-Holland.Google Scholar
Gallego, A. (1983). Organization of the outer plexiform layer of the tetrapoda retina. In Progress in Sensory Physiology, ed. Ottoson, D., pp. 83114. Berlin, Heidelberg, New York, Tokyo: Springer Verlag.Google Scholar
Gallego, A. (1985). Advances in horizontal cell terminology since Cajal. In Neurocircuitry of the Retina. A Cajal Memorial, ed. Gallego, A. & Gouras, P., pp. 122140. New York: Elsevier.Google Scholar
Gallego, A. (1986). Comparative studies on horizontal cells and a note on microglial cells. Progress in Retinal Research 5, 165206.CrossRefGoogle Scholar
Harman, A.M. (1994). Horizontal cells in the retina of the brush-tailed possum. Experimental Brain Research 98, 168171.CrossRefGoogle ScholarPubMed
Harman, A.M. & Ferguson, J. (1994). Morphology and birth dates of horizontal cells in the retina of a marsupial. Journal of Comparative Neurology 340, 392404.Google Scholar
Hebel, R. (1976). Distribution of retinal ganglion cells in five mammalian species (pig, sheep, ox, horse, dog). Anatomy and Embryology 150, 4551.CrossRefGoogle ScholarPubMed
Hokoç, J.N., de Oliveira, M.M.M. & Ahnelt, P. (1993). Three types of horizontal cells in a primitive mammal, the opossum (Didelphis marsupialis aurila): A Golgi-LM study. Investigative Ophthalmology and Visual Science 34, 1152.Google Scholar
Hughes, A. (1977). The topography of vision in mammals of contrasting life style: Comparative optics and retinal organisation. In Handbook of Sensory Physiology, ed. Crescitelli, F., Vol. VII/5: The Visual System of Vertebrates, pp. 613756. Berlin: Springer Verlag.Google Scholar
Jacobs, G.H. (1993). The distribution and nature of colour vision among the mammals. Biological Reviews 68, 413471.Google Scholar
Kallius, E. (1894). Untersuchungen über die Netzhaut der Säugetiere. Anatomische Hefte 3, 527582.Google Scholar
Kolb, H. (1974). The connections between horizontal cells and photo-receptors in the retina of the cat: Electron microscopy of Golgi preparations. Journal of Comparative Neurology 155, 114.Google Scholar
Kolb, H. & Normann, R.A. (1982). A-type horizontal cells of the superior edge of the linear visual streak of the rabbit retina have oriented, elongated dendritic trees. Vision Research 22, 905916.CrossRefGoogle ScholarPubMed
Kolb, H., Mariani, A. & Gallego, A. (1980). A second type of horizontal cell in the monkey retina. Journal of Comparative Neurology 189, 3144.Google Scholar
Kolb, H., Linberg, K.A. & Fisher, S.K. (1992). The Neurons of the human retina: A Golgi Study. Journal of Comparative Neurology 318, 147187.Google Scholar
Kolb, H., Fernandez, E., Schouten, J., Ahnelt, P., Linberg, K.A. & Fisher, S.K. (1994). Are there three types of horizontal cell in the human retina? Journal of Comparative Neurology 343, 370386.Google Scholar
Kolmer, W. (1936). Die Netzhaut (Retina). In Handbuch der mikro-skopischen Anatomie des Menschen, Band 3: Haul und Sinnesorgane, Teil 2: Auge, , ed. v. Möllendorff, W., pp. 295466, Berlin: Springer Verlag.Google Scholar
Linberg, K.A., Suemune, S. & Fisher, S.K. (1996). The retinal neurons of the California ground squirrel, Spermophilus beecheyi: A Golgi study. Journal of Comparative Neurology 365, 173216.Google Scholar
Marenghi, G. (1900). Contributo alla fina organizzazione della retina. Anatomischer Anzeiger (Suppl.) 18, 1216.Google Scholar
Mariani, A.P. (1985). Multiaxonal horizontal cells in the retina of the tree shrew, Tupaia glis. Journal of Comparative Neurology 233, 553563.CrossRefGoogle ScholarPubMed
Mills, S.L. & Massey, S.C. (1994). Distribution and coverage of A-and B-type horizontal cells stained with neurobiotin in the rabbit retina. Visual Neuroscience 11, 549560.Google Scholar
Müller, B. & Peichl, L. (1993). Horizontal cells in the cone-dominated tree shrew retina: Morphology, photoreceptors contacts, and topographical distribution. Journal of Neuroscience 13, 36283646.Google Scholar
Peichl, L., Buhl, E.H. & Boycott, B.B. (1987). Alpha ganglion cells in the rabbit retina. Journal of Comparative Neurology 263, 2541.CrossRefGoogle ScholarPubMed
Peichl, L. & González-Soriano, J. (1993). Unexpected presence of neurofilaments in axon-bearing horizontal cells of the mammalian retina. Journal of Neuroscience 13, 40914100.Google Scholar
Peichl, L. & González-Soriano, J. (1994). Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil and guinea pig. Visual Neuroscience 11, 501517.Google Scholar
Polyak, S.L. (1941). The Retina. Chicago, Illinois: University of Chicago Press.Google Scholar
Ramon y Cajal, S. (1893). La rétine des vertébrés. La Cellule 9, 119257.Google Scholar
Ramon y Cajal, S. (1911). Histologie du Système Nerveux de l'Homme et des Vertébrés. Tome II, pp. 296325. Paris: A. Maloine.Google Scholar
Raviola, E. & Dacheux, R.F. (1983). Variations in structure and response properties of horizontal cells in the retina of the rabbit. Vision Research 23, 12211227.Google Scholar
Raviola, E. & Dacheux, R.F. (1990). Axonless horizontal cells of the rabbit retina: Synaptic connections and origin of the rod aftereffect. Journal of Neurocytology 19, 731736.Google Scholar
Röhrenbeck, J., Wässle, H. & Heizmann, C.W. (1987). Immunocytochemical labelling of horizontal cells in mammalian retina using antibodies against calcium-binding proteins. Neuroscience Letters 77, 255260.Google Scholar
Sandmann, D., Boycott, B.B. & Peichl, L. (1996). Blue-cone horizontal cells in the retinae of horses and other Equidae. Journal of Neuroscience 16, 33813396.Google Scholar
Smith, R.G. (1995). Simulation of an anatomically defined local circuit: The cone-horizontal cell network in cat retina. Visual Neuroscience 12, 545561.Google Scholar
Tauchi, M. & Masland, R.H. (1984). The shape and arrangement of the cholinergic neurons in the rabbit retina. Proceedings of the Royal Society (London) B 223, 101119.Google ScholarPubMed
Wässle, H., Boycott, B.B. & Peichl, L. (1978). Receptor contacts of horizontal cells in the retina of the domestic cat. Proceedings of the Royal Society (London) B 203, 247267.Google Scholar
Wässle, H. & Boycott, B.B. (1991). Functional architecture of the mammalian retina. Physiological Reviews 71, 447471.CrossRefGoogle ScholarPubMed
West, R.W. (1978). Bipolar and horizontal cells of the gray squirrel retina: Golgi morphology and receptor connections. Vision Research 18, 129136.CrossRefGoogle ScholarPubMed
West, R.W. & Dowling, J.E. (1975). Anatomical evidence for cone and rod-like receptors in the gray squirrel, ground squirrel, and prairie dog retinas. Journal of Comparative Neurology 159, 439460.CrossRefGoogle ScholarPubMed