Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T02:15:43.708Z Has data issue: false hasContentIssue false

Global integration of local color differences in transparency perception: An fMRI study

Published online by Cambridge University Press:  06 September 2006

MICHEL DOJAT
Affiliation:
Unité mixte Inserm/UJF U594, Neuroimagerie Fonctionnelle et Métabolique, LRC CEA 30V, Grenoble, France
LOŸS PIETTRE
Affiliation:
Unité mixte Inserm/UJF U594, Neuroimagerie Fonctionnelle et Métabolique, LRC CEA 30V, Grenoble, France
CHANTAL DELON-MARTIN
Affiliation:
Unité mixte Inserm/UJF U594, Neuroimagerie Fonctionnelle et Métabolique, LRC CEA 30V, Grenoble, France
MATHILDE PACHOT-CLOUARD
Affiliation:
Unité mixte Inserm/UJF U594, Neuroimagerie Fonctionnelle et Métabolique, LRC CEA 30V, Grenoble, France
CHRISTOPH SEGEBARTH
Affiliation:
Unité mixte Inserm/UJF U594, Neuroimagerie Fonctionnelle et Métabolique, LRC CEA 30V, Grenoble, France
KENNETH KNOBLAUCH
Affiliation:
Inserm, U371, Cerveau et Vision, Department of Cognitive Neurosciences, Bron, France

Abstract

In normal viewing, the visual system effortlessly assigns approximately constant attributes of color and shape to perceived objects. A fundamental component of this process is the compensation for illuminant variations and intervening media to recover reflectance properties of natural surfaces. We exploited the phenomenon of transparency perception to explore the cortical regions implicated in such processes, using fMRI. By manipulating the coherence of local color differences around a region in an image, we interfered with their global perceptual integration and thereby modified whether the region appeared transparent or not. We found the major cortical activation due to global integration of local color differences to be in the anterior part of the parahippocampal gyrus. Regions differentially activated by chromatic versus achromatic geometric patterns showed no significant differential response related to the coherence/incoherence of local color differences. The results link the integration of local color differences in the extraction of a transparent layer with sites activated by object-related properties of an image.

Type
SURFACE COLOR PERCEPTION
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adelson, E.H. (1993). Perceptual organization and the judgment of brightness. Science 262, 20422044.CrossRefGoogle Scholar
Adelson, E.H. (2000). Lightness perception and lightness illusions. In The New Cognitive Neurosciences, ed. Gazzaniga, M., pp. 339351. Cambridge, MA: MIT Press.
Adelson, E.H. & Movshon, J.A. (1982). Phenomenal coherence of moving visual patterns. Nature 300, 523525.CrossRefGoogle Scholar
Anderson, B.L. (1997). A theory of illusory lightness and transparency in monocular and binocular images: The role of contour and junctions. Perception 26, 419454.CrossRefGoogle Scholar
Anstis, S. & Cavanagh, P. (1983). A minimum motion technique for judging equiluminance. In Colour Vision: Physiology & Psychophysics, eds. Mollon, J.D. & Sharpe, L.T., pp. 155166. London: Academic Press.
Bartels, A. & Zeki, S.M. (2000). The architecture of the colour centre in the human visual brain: New results and a review. European Journal of Neuroscience 12, 172193.CrossRefGoogle Scholar
Brett, M., Anton, J., Valabregue, R., & Poline, J. (2002). Region of interest analysis using an SPM toolbox, in 8th International Conference on Functional Mapping of the Human Brain, volume 16, June 2–6, 2002, Sendai, Japan: available on CD-ROM in NeuroImage 16, 497.
Brewer, A.A., Liu, J., Wade, A.R., & Wandell, B.A. (2005). Visual field maps and stimulus selectivity in human ventral occipital cortex. Nature Neuroscience 8, 11021109.CrossRefGoogle Scholar
Chen, V.J. & D'Zmura, M. (1998). Test of a convergence model for color transparency perception. Perception 27, 595608.CrossRefGoogle Scholar
Cowey, A., Heywood, C., & Irving-Bell, L. (2001). The regional cortical basis of achromatopsia: A study on macaque monkeys and an achromatopsic patient. European Journal of Neuroscience 14, 15551555.CrossRefGoogle Scholar
D'Zmura, M., Colantoni, P., Knoblauch, K., & Laget, B. (1997). Color transparency. Perception 26, 471492.CrossRefGoogle Scholar
D'Zmura, M., Rinner, O., & Gegenfurtner, K.R. (2000). The colors seen behind transparent filters. Perception 29, 911926.CrossRefGoogle Scholar
Faul, F. & Ekroll, V. (2002). Psychophysical model of chromatic perceptual transparency based on subtractive color mixture. Journal of the Optical Society of America A 19, 10841095.CrossRefGoogle Scholar
Friston, K., Zarahn, E., Josephs, O., Henson, R., & Dale, A. (1999). Stochastic designs in event-related fMRI. NeuroImage 10, 60719.CrossRefGoogle Scholar
Friston, K.J., Holmes, A.P., Poline, J.B., Frith, C.D., & Frackowiak, R.S.J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping 2, 189210.Google Scholar
Gilchrist, A.L. (2005). Lightness perception: Seeing one color through another. Current Biology 15, 330332.CrossRefGoogle Scholar
Girard, P., Lomber, S.G., & Bullier, J. (2002). Shape discrimination deficits during reversible deactivation of area V4 in the macaque monkey. Cerebral Cortex 12, 11461156.CrossRefGoogle Scholar
Hagedorn, J. & D'Zmura, M. (2000). Color appearance of surfaces viewed through fog. Perception 29, 11691184.CrossRefGoogle Scholar
Howard, R.J., Fytche, D.H., Barnes, J., McKeefry, D., Ha, Y., Woodruff, P.W., Bullmore, E.T., Simmons, A., Williams, S.C., David, A.S., & Brammer, M. (1998). The functional anatomy of imagining and perceiving colour. Neuro Report 9, 10191023.CrossRefGoogle Scholar
Hurlbert, A. (2003). Colour vision: primary visual cortex shows its influence. Current Biology 13, 270272.CrossRefGoogle Scholar
Huxlin, K.R., Saunders, R.C., Marchionini, D., Pham, H.A., & Merigan, W.H. (2000). Perceptual deficits after lesions of inferotemporal cortex in macaques. Cerebral Cortex 10, 671683.CrossRefGoogle Scholar
Judd, D.B. (1951). Report of the U.S. Secretariat Committee on Colorimetry and Artificial Daylight, in CIE Proceedings, Vol. 1, Part 7, (Stockholm): Paris: Bureau Central CIE, p. 11.
Kersten, D. (1991). Transparency and the cooperative computation of scene attributes. In Computational Models of Visual Processing, eds. Landy, M.S. & Movshon, M.S., pp. 209228. Cambridge, MA: MIT Press.
Khang, B.G. & Zaidi, Q. (2002). Cues and strategies for color constancy: Perceptual scission, image junctions and transformational color matching. Vision Research, 42, 211226.CrossRefGoogle Scholar
Koffka, K. (1935). Principles of Gestalt psychology, New York: Harcourt, Brace and Company.
Martin, A., Haxby, J., Lalonde, F., Wiggs, C., & Ungerleider, L. (1995). Discrete cortical regions associated with knowledge of color and knowledge of action. Science 270, 102105.CrossRefGoogle Scholar
Metelli, F. (1974). The perception of transparency. Scientific American 230, 4754.CrossRefGoogle Scholar
Nichols, T. & Holmes, A. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping 15, 125.CrossRefGoogle Scholar
Orban, G.A. (2001). Imaging image processing in the human brain. Current Opinion in Neurology 14, 4754.CrossRefGoogle Scholar
Ramsden, B.M., Hung, C.P., & Roe, A.W. (2001). Real and illusory contour processing in Area V1 of the primate—A cortical balancing act. Cerebral Cortex 11, 648665.CrossRefGoogle Scholar
Ripamonti, C. & Westland, S. (2003). Prediction of transparency perception based on cone-excitation ratios. Journal of the Optical Society of America A 20, 16731680.CrossRefGoogle Scholar
Schirillo, J.A. & Shevell, S.K. (1997). An account of brightness in complex scenes based on inferred illumination. Perception 26, 507518.CrossRefGoogle Scholar
Stanley, D. & Rubin, N. (2003). fMRI activation in response to illusory contours and salient regions in the human lateral occipital complex. Neuron 37, 32331.CrossRefGoogle Scholar
Suzuki, W.A. & Amaral, D.G. (1994). Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. Journal of Comparative Neurology 350, 497533.CrossRefGoogle Scholar
Tootell, R.B.H., Nelissen, K., Vanduffel, W., & Orban, G.A. (2004). Search for color center(s) in macaque visual cortex. Cerebral Cortex 14, 353363.CrossRefGoogle Scholar
Wallach, H. (1976). On Perception. New York: Quadrangle.
Walsh, V., Carden, D., Butler, S.R., & Kulikowski, J.J. (1993). The effects of V4 lesions on the visual abilities of macaques: hue discrimination and colour constancy. Behavioral Brain Research 53, 5162.CrossRefGoogle Scholar
Zeki, S.M. & Marini, L. (1998). Three cortical stages of colour processing in the human brain. Brain 121, 16691685.CrossRefGoogle Scholar